* Bump cuda and rocm versions
Update ROCm to linux:6.3 win:6.2 and CUDA v12 to 12.8.
Yum has some silent failure modes, so largely switch to dnf.
* Fix windows build script
clang outputs are faster. we were previously building with clang via gcc
wrapper in cgo but this was missed during the build updates so there was
a drop in performance
set owner and group when building the linux tarball so extracted files
are consistent. this is the behaviour of release tarballs in version
0.5.7 and lower
ollama requires vcruntime140_1.dll which isn't found on 2019. previously
the job used the windows runner (2019) but it explicitly installs
2022 to build the app. since the sign job doesn't actually build
anything, it can use the windows-2022 runner instead.
* add build to .dockerignore
* test: only build one arch
* add build to .gitignore
* fix ccache path
* filter amdgpu targets
* only filter if autodetecting
* Don't clobber gpu list for default runner
This ensures the GPU specific environment variables are set properly
* explicitly set CXX compiler for HIP
* Update build_windows.ps1
This isn't complete, but is close. Dependencies are missing, and it only builds the "default" preset.
* build: add ollama subdir
* add .git to .dockerignore
* docs: update development.md
* update build_darwin.sh
* remove unused scripts
* llm: add cwd and build/lib/ollama to library paths
* default DYLD_LIBRARY_PATH to LD_LIBRARY_PATH in runner on macOS
* add additional cmake output vars for msvc
* interim edits to make server detection logic work with dll directories like lib/ollama/cuda_v12
* remove unncessary filepath.Dir, cleanup
* add hardware-specific directory to path
* use absolute server path
* build: linux arm
* cmake install targets
* remove unused files
* ml: visit each library path once
* build: skip cpu variants on arm
* build: install cpu targets
* build: fix workflow
* shorter names
* fix rocblas install
* docs: clean up development.md
* consistent build dir removal in development.md
* silence -Wimplicit-function-declaration build warnings in ggml-cpu
* update readme
* update development readme
* llm: update library lookup logic now that there is one runner (#8587)
* tweak development.md
* update docs
* add windows cuda/rocm tests
---------
Co-authored-by: jmorganca <jmorganca@gmail.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
upload-artifacts strips off leading common paths so when
the ./build/ artifacts were removed, the ./dist/windows-amd64
prefix became common and was stripped, making the
later download-artifacts place them in the wrong location
* llama: wire up builtin runner
This adds a new entrypoint into the ollama CLI to run the cgo built runner.
On Mac arm64, this will have GPU support, but on all other platforms it will
be the lowest common denominator CPU build. After we fully transition
to the new Go runners more tech-debt can be removed and we can stop building
the "default" runner via make and rely on the builtin always.
* build: Make target improvements
Add a few new targets and help for building locally.
This also adjusts the runner lookup to favor local builds, then
runners relative to the executable, and finally payloads.
* Support customized CPU flags for runners
This implements a simplified custom CPU flags pattern for the runners.
When built without overrides, the runner name contains the vector flag
we check for (AVX) to ensure we don't try to run on unsupported systems
and crash. If the user builds a customized set, we omit the naming
scheme and don't check for compatibility. This avoids checking
requirements at runtime, so that logic has been removed as well. This
can be used to build GPU runners with no vector flags, or CPU/GPU
runners with additional flags (e.g. AVX512) enabled.
* Use relative paths
If the user checks out the repo in a path that contains spaces, make gets
really confused so use relative paths for everything in-repo to avoid breakage.
* Remove payloads from main binary
* install: clean up prior libraries
This removes support for v0.3.6 and older versions (before the tar bundle)
and ensures we clean up prior libraries before extracting the bundle(s).
Without this change, runners and dependent libraries could leak when we
update and lead to subtle runtime errors.
This leverages caching, and some reduced installer scope to try
to speed up builds. It also tidies up some windows build logic
that was only relevant for the older generate/cmake builds.
This will no longer error if built with regular gcc on windows. To help
triage issues that may come in related to different compilers, the runner now
reports the compier used by cgo.
* Unified arm/x86 windows installer
This adjusts the installer payloads to be architecture aware so we can cary
both amd64 and arm64 binaries in the installer, and install only the applicable
architecture at install time.
* Include arm64 in official windows build
* Harden schedule test for slow windows timers
This test seems to be a bit flaky on windows, so give it more time to converge
The rocm CI step for RCs was incorrectly tagging them as the latest rocm build.
The multiarch manifest was incorrectly tagged twice (with and without the
prefix "v"). Static windows artifacts weren't being carried between build
jobs. This also fixes the latest tagging script.
* Optimize container images for startup
This change adjusts how to handle runner payloads to support
container builds where we keep them extracted in the filesystem.
This makes it easier to optimize the cpu/cuda vs cpu/rocm images for
size, and should result in faster startup times for container images.
* Refactor payload logic and add buildx support for faster builds
* Move payloads around
* Review comments
* Converge to buildx based helper scripts
* Use docker buildx action for release
We're over budget for github's maximum release artifact size with rocm + 2 cuda
versions. This splits rocm back out as a discrete artifact, but keeps the layout so it can
be extracted into the same location as the main bundle.
This adjusts linux to follow a similar model to windows with a discrete archive
(zip/tgz) to cary the primary executable, and dependent libraries. Runners are
still carried as payloads inside the main binary
Darwin retain the payload model where the go binary is fully self contained.
This also adjusts our algorithm to favor our bundled ROCm.
I've confirmed VRAM reporting still doesn't work properly so we
can't yet enable concurrency by default.
This implements the release logic we want via gh cli
to support updating releases with rc tags in place and retain
release notes and other community reactions.