feat: add new Ollama engine using ggml through cgo
This change introduces a new way to run pretrained models. It introduces 3 high level interfaces and a bunch of smaller helper interfaces to facilitate this.
- `model.Model` defines the interface for a model architecture. Models such as `llama` and `mllama`, which are provided as examples, can implement the model's forward propagation in the `Forward` method. This method will be called to generate completions. This interface can be found in `model/model.go`
- `ml.Backend` defines the interface for a backend tensor library, in this case `ggml`. Among other things, a Backend is responsible for loading a pretrained model into hardware (GPU, CPU, etc) and providing an interface for Models to access loaded tensors. This interface can be found in `ml/backend.go`
- `ml.Tensor` defines the interface for a tensor and tensor operations
This is the first implementation of the new engine. Follow up PRs will implement more features:
- non-greedy sampling (#8410)
- integration with Ollama and KV caching (#8301)
- more model support (#9080) with more coming soon
Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
Previously, some costly things were causing the loading of GGUF files
and their metadata and tensor information to be VERY slow:
* Too many allocations when decoding strings
* Hitting disk for each read of each key and value, resulting in a
not-okay amount of syscalls/disk I/O.
The show API is now down to 33ms from 800ms+ for llama3 on a macbook pro
m3.
This commit also prevents collecting large arrays of values when
decoding GGUFs (if desired). When such keys are encountered, their
values are null, and are encoded as such in JSON.
Also, this fixes a broken test that was not encoding valid GGUF.
Still not complete, needs some refinement to our prediction to understand the
discrete GPUs available space so we can see how many layers fit in each one
since we can't split one layer across multiple GPUs we can't treat free space
as one logical block