With old memory estimates, it's currently impossible to load more
than one model at a time when no GPUs are available. This is because
the check for whether we need to evict a model looks to see if all
layers of the new model can be loaded onto GPUs, which is never true
if there are no GPUs. Before the memory management changes, there
was a special code path for CPU-only systems.
This problem does not exist with new memory estimates.
Fixes#11974
This changes the memory allocation strategy from upfront estimation to
tracking actual allocations done by the engine and reacting to that. The
goal is avoid issues caused by both under-estimation (crashing) and
over-estimation (low performance due to under-utilized GPUs).
It is currently opt-in and can be enabled for models running on the
Ollama engine by setting OLLAMA_NEW_ESTIMATES=1. Behavior in other
cases is unchanged and will continue to use the existing estimates.
This is a partial revert of 0478d44 "Fixed over vram allcation dure to
small initial layer sizes."
Previously we used the size of the first layer as an extra reserved
amount of space to buffer our memory estimates. The above commit
changed this to use the largest layer. However, this had performance
impacts on more models than the original commit was trying to fix.
There is just a heuristic without an ideal solution so this goes back
to the historic behavior.
Fixes: #10765, #10756, #10752, #10726
Currently, when the backend is created, the tensors are loaded at the
same time, which is a slow operation. This separates them to be two
steps:
- Create backend, including enumerating tensors and memory allocation
- Loading tensor data
This allows more flexibility in managing model loading.
The Llama engine always places vision projectors on the first GPU
if one exists. However, the Ollama engine groups it with the output
layer, which means the projector is only offloaded if all other layers
are offloaded. The memory estimation code always assumes the former
layout - this changes it to use the correct layout based on the engine.
This addresses two impacts of the current behavior:
- In multi-GPU setups, we can crash with OOM errors when we try to
allocate memory on a full GPU while another still has space.
- If the vision projector is large, it may prevent us from offloading
anything when we could have fit some of the text layers.
In some cases, if we fail to assign a piece of the model to a GPU then
we lose track of this data. Although it doesn't change the memory
allocation, it does affect the total size of the model reported by
tools such as ollama ps (and also the percent offloaded).
This makes it look like setting num_gpu isn't reflected in ollama ps,
which isn't true but the offloading percent may appear to not change.
Spreading the model across more GPUs will continue to impact the
reported total size of the model.
If it's an array, it uses the max value in the array
If array values for head counts becomes more popular, we can consider a
more invasive change like #10225 to calculate more accurate estimates.
Fixes: #9984
Gemma3 uses sliding windows for its context on 5/6 layers, significantly
reducing memory usage but leading to uneven usage across layers,
which makes allocation to the correct GPU difficult. We currently
estimate very conservatively by assuming all layers are consistent
at the max size.
Llama3.2-vision is also inconsistent between self attention and cross
attention layers - at moment, we calculate the correct total size
and then average this across layers. In some cases, this may lead
to crashes if a large layer is placed on a GPU sized by the average.
This allows memory estimation to calculate per-layer KV cache size
and take this account when placing layers onto GPUs. We already do
this for weights that vary per-tensor, so this is a logical extension.
Fixes#9730Fixes#9890
* Include unified vision layers in memory prediction
For newer vision models with a single gguf, include
the projection estimates.
* Adjust CLI to handle both styles of vision model metadata
* Wire up new tokenizers for new engine
If we're loading the new engine, utilize the new model
text processor instead of calling into cgo wrappers for
llama.cpp. This also cleans up some tech debt from the
older tokenization flow for the C++ server which was
no longer used.
This also adjusts the grammar handling logic to pass
through to the new engine instead of utilizing the cgo
schema to grammar call.
* Lay foundation for auto selection of new engine
feat: add new Ollama engine using ggml through cgo
This change introduces a new way to run pretrained models. It introduces 3 high level interfaces and a bunch of smaller helper interfaces to facilitate this.
- `model.Model` defines the interface for a model architecture. Models such as `llama` and `mllama`, which are provided as examples, can implement the model's forward propagation in the `Forward` method. This method will be called to generate completions. This interface can be found in `model/model.go`
- `ml.Backend` defines the interface for a backend tensor library, in this case `ggml`. Among other things, a Backend is responsible for loading a pretrained model into hardware (GPU, CPU, etc) and providing an interface for Models to access loaded tensors. This interface can be found in `ml/backend.go`
- `ml.Tensor` defines the interface for a tensor and tensor operations
This is the first implementation of the new engine. Follow up PRs will implement more features:
- non-greedy sampling (#8410)
- integration with Ollama and KV caching (#8301)
- more model support (#9080) with more coming soon
Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
Provide a mechanism for users to set aside an amount of VRAM on each GPU
to make room for other applications they want to start after Ollama, or workaround
memory prediction bugs
The recent refactoring of the memory prediction assumed all layers
are the same size, but for some models (like deepseek-coder-v2) this
is not the case, so our predictions were significantly off.
Prior to this change, we logged the memory prediction multiple times
as the scheduler iterates to find a suitable configuration, which can be
confusing since only the last log before the server starts is actually valid.
This now logs once just before starting the server on the final configuration.
It also reports what library instead of always saying "offloading to gpu" when
using CPU.
Still not complete, needs some refinement to our prediction to understand the
discrete GPUs available space so we can see how many layers fit in each one
since we can't split one layer across multiple GPUs we can't treat free space
as one logical block
This moves all the env var reading into one central module
and logs the loaded config once at startup which should
help in troubleshooting user server logs
If we get our predictions wrong, this can be used to
set a lower memory limit as a workaround. Recent multi-gpu
refactoring accidentally removed it, so this adds it back.
This change adds support for multiple concurrent requests, as well as
loading multiple models by spawning multiple runners. The default
settings are currently set at 1 concurrent request per model and only 1
loaded model at a time, but these can be adjusted by setting
OLLAMA_NUM_PARALLEL and OLLAMA_MAX_LOADED_MODELS.