sapphire rapids has amx support but it ends up having a negative
performance impact.
emerald rapids also has amx support with a positive performance impact
however there's no reasonable way in ggml to differentiate between the
two. the impact is small (~6%) so disable amx entirely for simplicity
This provides integration with the new Ollama engine
(5824541 next ollama runner (#7913)) and the rest of the Ollama
infrastructure such as the runner and Ollama server.
In addition, it also builds out the KV cache infrastructure to
support requirements of how Ollama runs models such as:
- Parallel processing
- Memory management for defragmentation and shifting
- Multi-modal modals
Both old and new engines continue to be supported. By default, only
the old engine is used. To enable the new engine:
Start the server with the OLLAMA_NEW_ENGINE environment variable set:
OLLAMA_NEW_ENGINE=1 ./ollama serve
Start a model that is supported by the Ollama engine. This one is Llama 3.1 8b Q4_K_M:
./ollama run jessegross/llama3.1
Shield the code processing the embedding result
from subsequent calls that may overwrite the same
buffer to process a second input when retrieving
model embeddings.
* add build to .dockerignore
* test: only build one arch
* add build to .gitignore
* fix ccache path
* filter amdgpu targets
* only filter if autodetecting
* Don't clobber gpu list for default runner
This ensures the GPU specific environment variables are set properly
* explicitly set CXX compiler for HIP
* Update build_windows.ps1
This isn't complete, but is close. Dependencies are missing, and it only builds the "default" preset.
* build: add ollama subdir
* add .git to .dockerignore
* docs: update development.md
* update build_darwin.sh
* remove unused scripts
* llm: add cwd and build/lib/ollama to library paths
* default DYLD_LIBRARY_PATH to LD_LIBRARY_PATH in runner on macOS
* add additional cmake output vars for msvc
* interim edits to make server detection logic work with dll directories like lib/ollama/cuda_v12
* remove unncessary filepath.Dir, cleanup
* add hardware-specific directory to path
* use absolute server path
* build: linux arm
* cmake install targets
* remove unused files
* ml: visit each library path once
* build: skip cpu variants on arm
* build: install cpu targets
* build: fix workflow
* shorter names
* fix rocblas install
* docs: clean up development.md
* consistent build dir removal in development.md
* silence -Wimplicit-function-declaration build warnings in ggml-cpu
* update readme
* update development readme
* llm: update library lookup logic now that there is one runner (#8587)
* tweak development.md
* update docs
* add windows cuda/rocm tests
---------
Co-authored-by: jmorganca <jmorganca@gmail.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
This change adds a test to catch a regression in schema_to_grammar where
the order of keys in the JSON schema is not preserved in the generated
grammar, which is critical for step-by-step reasoning.
Sometimes the KV cache requires defragmentation even without
triggering the threshold heuristic. In this case, decoding
will not being able to find a KV cache slot. This is particularly
difficult for the caller to handle if it happens in between
ubatches. To avoid this, we should immediately trigger a defrag.
In addition, a heavily fragmented cache can require more than
max_moves to defragment. Currently, we stop when we hit the limit
but this can leave a cache that still does not have adequate space
even after defragmentation is triggered. Instead, we should do
multiple batches of processing until everything is complete.
Fixes#7949
Previously we decoded and re-encoded JSON schemas during validation,
which served no purpose since json.RawMessage already validates JSON
syntax. Worse, the re-encoding lost field ordering from the original
schema, which affects inference quality during step-by-step reasoning.
While fixing this ordering issue by using json.RawMessage directly,
testing revealed that schema_to_grammar (from llama.cpp) also fails to
preserve field order during grammar generation. This appears to be the
root cause of inference degradation.
This change prevents us from mangling the user's original schema order,
but we still need to address the ordering issue in schema_to_grammar.
That will be a separate change.
Updates #7978
The final implementation of #7499 removed dynamic vector requirements
in favor of a simpler filename based model, and this was left over logic that
is no longer needed.
* llama: wire up builtin runner
This adds a new entrypoint into the ollama CLI to run the cgo built runner.
On Mac arm64, this will have GPU support, but on all other platforms it will
be the lowest common denominator CPU build. After we fully transition
to the new Go runners more tech-debt can be removed and we can stop building
the "default" runner via make and rely on the builtin always.
* build: Make target improvements
Add a few new targets and help for building locally.
This also adjusts the runner lookup to favor local builds, then
runners relative to the executable, and finally payloads.
* Support customized CPU flags for runners
This implements a simplified custom CPU flags pattern for the runners.
When built without overrides, the runner name contains the vector flag
we check for (AVX) to ensure we don't try to run on unsupported systems
and crash. If the user builds a customized set, we omit the naming
scheme and don't check for compatibility. This avoids checking
requirements at runtime, so that logic has been removed as well. This
can be used to build GPU runners with no vector flags, or CPU/GPU
runners with additional flags (e.g. AVX512) enabled.
* Use relative paths
If the user checks out the repo in a path that contains spaces, make gets
really confused so use relative paths for everything in-repo to avoid breakage.
* Remove payloads from main binary
* install: clean up prior libraries
This removes support for v0.3.6 and older versions (before the tar bundle)
and ensures we clean up prior libraries before extracting the bundle(s).
Without this change, runners and dependent libraries could leak when we
update and lead to subtle runtime errors.
When processing a prompt, we look for image tags of the form
[img-0], which are inserted by the Ollama server process.
However, this can cause errors if the original prompt has these
tags - typically an image not found error is returned.
This changes tag searching behavior to be similar to the 0.3.x
series, which will largely avoid these problems. However,they can
still happen when input text with these tags is used with image
models. The correct solution is to escape the tags but this is a
larger issue with special sequences in general so this is an
incremental fix that should avoid the problem for the majority
of cases.
This also makes it easier to truncate long inputs the same as
shifting but does not actually implement it. This type of
truncation has a trade off between quality and time to first
token.
If there are no avilable slots for new sequences then a request
will not be added to the processing queue but will continue on
to wait for a response that never comes. Besides never giving a
response to the request, this prevents the model from being
unloaded due to the outstanding request.
To prevent this, there are semaphores that prevent more requests
from being processed than there are slots - one in the Ollama
server and one in the runner.
- The Ollama server one works but it is not designed to protect
the runner's data internal structures and the runner can return a
final response before clearing its data structures.
- The internal runner semaphore has similar behavior where it
can release the semaphore when it issues a response. This is
wrong - it should only release the semaphore after it has
cleared the data structure.
In addition, we should return an error if a slot is not found
rather than deadlocking in the event we ever get to this spot.
Fixes#7779
Users get confused by "Failed to acquire semaphore" error="context canceled"
messages in the logs, which are actually clients giving up. While there could be
a legitimate hang bug in the system, sometimes this is just short client timeouts
with an overloaded system, so this should help users understand what's going on
better.
Previous versions of the runner would truncate inputs to the context
window before beginning processing. The main processing loop relied
on this behavior if the context needed to be shifted later (due to
token generation). If truncation did not occur then invariants
would be broken, causing crashes or infinite loops.
Later versions attempted to fix these bugs and make the logic less
subtle so that all inputs could be handled. Truncation was removed
to make things consistent.
However, truncation is much faster than processing and shifting, so
removing it caused performance problems when the input vastly exceeded
the context size. This restores the input truncation as a performance
optimization while keeping the more robust processing logic.
Fixes#7762
We need to track which tokens are in the cache ourselves. We currently
add tokens to the cache tracker when we add them to batch but they are
not actually in the cache until we call Decode. This can cause
confusion when we are shifting the cache.
Avoids "could not find a KV slot for the batch" issues.
Bug #7545
We try to recover from errors by dropping the tokens that caused the
problem and re-trying. However, dropping the tokens is not correct
and continuing often leads to infinite loops. To avoid, this we
end the sequence if such a condition is detected, which is also
surprising.
At this point, it is better to just report the error. This will make
it easier to find problems and the alternatives are perhaps even more
surprising to users.
This is not a very satisfactory solution either - we should isolate
the error and return it to the user without killing the whole process.
However, this is an incremental step and consistent with most other
failures (which either manifest as abort() or panic).
Fragmentation of the KV cache can occur due to cache shifting or
different sequences getting processed. Decode uses a heuristic to
decide if it should defrag. However, this heuristic isn't 100%
accurate, so decoding can sometimes fail by surprise.
For these cases, if decode indicates that there is no KV cache space,
we should defrag and then try again.
This is a partial revert of 8a35bb92
"runner.go: Increase survivability of main processing loop", removing
the panic handler.
Although we want to avoid errors taking down the runner, we also
should make the user aware of problems when they happen. In the
future, we can restructure things so both parts are true.