* Bump cuda and rocm versions
Update ROCm to linux:6.3 win:6.2 and CUDA v12 to 12.8.
Yum has some silent failure modes, so largely switch to dnf.
* Fix windows build script
centos-7 images have been deprecated upstream and replaced with
almalinux-8 images instead, requiring some small extra work.
Signed-off-by: José Pekkarinen <jose.pekkarinen@foxhound.fi>
This commit copies (without history) the bmizerany/ollama-go repository
with the intention of integrating it into the ollama as a replacement
for the pushing, and pulling of models, and management of the cache they
are pushed and pulled from.
New homes for these packages will be determined as they are integrated
and we have a better understanding of proper package boundaries.
The route assembly in Handler lacked clear organization making it
difficult scan for routes and their relationships to each other. This
commit aims to fix that by reordering the assembly of routes to group
them by category and purpose.
Also, be more specific about what "config" refers to (it is about CORS
if you were wondering... I was.)
There are two benefits to doing this:
- Provide a library function that models can use, reducing code for
each model implementation
- Enables a single place to drop in optimized implementations of
attention based on the backend or other factors. One is provided for
GGML.
On CUDA this improves token generation rate by about 3%. It does not
have a significant effect on Metal.
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Currently Rows is called as the last step in a model computation
to get the values for the output tokens. However, if we move it
earlier in the process then we can trim out computations that
never get used. This is similar to how models are defined in
llama.cpp.
Changing the model definition in this way improves token generation
performance by approximately 8%.
We don't need to create and destroy the GGML scheduler for every
context. This introduces extra CPU overhead for every forward
pass and extra memory for contexts that don't actually get scheduled
(for example, KV caches). We can instead just have one scheduler
for the backend and reset it each time we call Compute.
This improves token generation performance by 1-2% and removes
scheduler create/destroy from profile traces.
Currently the following parameters are in the runner but not used:
- numGPULayers
- mainGPU
- threads
- tensorSplit
This passes them through to the backend, which is where they would
actually get used. However, the GGML backend does not yet do anything
with them.
Added unit tests to verify error handling behavior in the Client.stream and Client.do methods.
Tests cover various error scenarios including:
- Error responses with status codes >= 400
- Error messages with successful status codes
- Empty error messages
- Successful responses
clang outputs are faster. we were previously building with clang via gcc
wrapper in cgo but this was missed during the build updates so there was
a drop in performance
sapphire rapids has amx support but it ends up having a negative
performance impact.
emerald rapids also has amx support with a positive performance impact
however there's no reasonable way in ggml to differentiate between the
two. the impact is small (~6%) so disable amx entirely for simplicity
set owner and group when building the linux tarball so extracted files
are consistent. this is the behaviour of release tarballs in version
0.5.7 and lower
The previous commit fixed flickering in the progress bar itself. Cursor
flickering is harder to address.
Cursor flickering could be fixed by hiding the cursor altogether while
the progress bar is displayed. The downside of this is that if the
program is killed in such a way that it can't clean up its state, it
would leave the cursor invisible.
Instead, this commit introduces an output buffer. All of the escape
codes and content for a single progress update are written to a buffer,
which is then flushed to the terminal all at once. This significantly
decreases the time during which the terminal has seen the cursor-hiding
code but has not yet seen the cursor-showing code, thus minimizing (but
not 100% eliminating) cursor flickering.
For more context, see:
https://gitlab.gnome.org/GNOME/vte/-/issues/2837#note_2269501
Previous code cleared the display before writing new content, creating a
window where the terminal could (and in some cases did) render empty lines.
Instead, we now write new content over the old content, only clearing
the trailing end of lines for cases where the new line is shorter.
Fixes#1664
We currently print system info before the GGML backends are loaded.
This results in only getting information about the default lowest
common denominator runner. If we move up the GGML init then we can
see what we are actually running.
Before:
time=2025-02-14T11:15:07.606-08:00 level=INFO source=runner.go:935 msg=system info="CPU : LLAMAFILE = 1 | CPU : LLAMAFILE = 1 | cgo(gcc)" threads=24
After:
time=2025-02-14T11:16:02.936-08:00 level=INFO source=runner.go:935 msg=system info="CPU : LLAMAFILE = 1 | CPU : LLAMAFILE = 1 | CUDA : ARCHS = 890 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | LLAMAFILE = 1 | cgo(gcc)" threads=24
provides a better approach to #9088 that will attempt to
evaluate symlinks (important for macOS where 'ollama' is
often a symlink), but use the result of os.Executable()
as a fallback in scenarios where filepath.EvalSymlinks
fails due to permission erorrs or other issues
In some cases, the directories in the executable path read by
filepath.EvalSymlinks are not accessible, resulting in permission
errors which results in an error when running models. It also
doesn't work well on long paths on windows, also resulting in
errors. This change removes filepath.EvalSymlinks when accessing
os.Executable() altogether
This provides integration with the new Ollama engine
(5824541 next ollama runner (#7913)) and the rest of the Ollama
infrastructure such as the runner and Ollama server.
In addition, it also builds out the KV cache infrastructure to
support requirements of how Ollama runs models such as:
- Parallel processing
- Memory management for defragmentation and shifting
- Multi-modal modals
Both old and new engines continue to be supported. By default, only
the old engine is used. To enable the new engine:
Start the server with the OLLAMA_NEW_ENGINE environment variable set:
OLLAMA_NEW_ENGINE=1 ./ollama serve
Start a model that is supported by the Ollama engine. This one is Llama 3.1 8b Q4_K_M:
./ollama run jessegross/llama3.1