We sometimes tokenize partial strings. For example, with
multimodal inputs, we split the input string around the images
and then tokenize each piece. In these cases, we should only add
the special tokens on the first piece.
* Include unified vision layers in memory prediction
For newer vision models with a single gguf, include
the projection estimates.
* Adjust CLI to handle both styles of vision model metadata
* Wire up new tokenizers for new engine
If we're loading the new engine, utilize the new model
text processor instead of calling into cgo wrappers for
llama.cpp. This also cleans up some tech debt from the
older tokenization flow for the C++ server which was
no longer used.
This also adjusts the grammar handling logic to pass
through to the new engine instead of utilizing the cgo
schema to grammar call.
* Lay foundation for auto selection of new engine
provides a better approach to #9088 that will attempt to
evaluate symlinks (important for macOS where 'ollama' is
often a symlink), but use the result of os.Executable()
as a fallback in scenarios where filepath.EvalSymlinks
fails due to permission erorrs or other issues
In some cases, the directories in the executable path read by
filepath.EvalSymlinks are not accessible, resulting in permission
errors which results in an error when running models. It also
doesn't work well on long paths on windows, also resulting in
errors. This change removes filepath.EvalSymlinks when accessing
os.Executable() altogether
This provides integration with the new Ollama engine
(5824541 next ollama runner (#7913)) and the rest of the Ollama
infrastructure such as the runner and Ollama server.
In addition, it also builds out the KV cache infrastructure to
support requirements of how Ollama runs models such as:
- Parallel processing
- Memory management for defragmentation and shifting
- Multi-modal modals
Both old and new engines continue to be supported. By default, only
the old engine is used. To enable the new engine:
Start the server with the OLLAMA_NEW_ENGINE environment variable set:
OLLAMA_NEW_ENGINE=1 ./ollama serve
Start a model that is supported by the Ollama engine. This one is Llama 3.1 8b Q4_K_M:
./ollama run jessegross/llama3.1
feat: add new Ollama engine using ggml through cgo
This change introduces a new way to run pretrained models. It introduces 3 high level interfaces and a bunch of smaller helper interfaces to facilitate this.
- `model.Model` defines the interface for a model architecture. Models such as `llama` and `mllama`, which are provided as examples, can implement the model's forward propagation in the `Forward` method. This method will be called to generate completions. This interface can be found in `model/model.go`
- `ml.Backend` defines the interface for a backend tensor library, in this case `ggml`. Among other things, a Backend is responsible for loading a pretrained model into hardware (GPU, CPU, etc) and providing an interface for Models to access loaded tensors. This interface can be found in `ml/backend.go`
- `ml.Tensor` defines the interface for a tensor and tensor operations
This is the first implementation of the new engine. Follow up PRs will implement more features:
- non-greedy sampling (#8410)
- integration with Ollama and KV caching (#8301)
- more model support (#9080) with more coming soon
Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
* add build to .dockerignore
* test: only build one arch
* add build to .gitignore
* fix ccache path
* filter amdgpu targets
* only filter if autodetecting
* Don't clobber gpu list for default runner
This ensures the GPU specific environment variables are set properly
* explicitly set CXX compiler for HIP
* Update build_windows.ps1
This isn't complete, but is close. Dependencies are missing, and it only builds the "default" preset.
* build: add ollama subdir
* add .git to .dockerignore
* docs: update development.md
* update build_darwin.sh
* remove unused scripts
* llm: add cwd and build/lib/ollama to library paths
* default DYLD_LIBRARY_PATH to LD_LIBRARY_PATH in runner on macOS
* add additional cmake output vars for msvc
* interim edits to make server detection logic work with dll directories like lib/ollama/cuda_v12
* remove unncessary filepath.Dir, cleanup
* add hardware-specific directory to path
* use absolute server path
* build: linux arm
* cmake install targets
* remove unused files
* ml: visit each library path once
* build: skip cpu variants on arm
* build: install cpu targets
* build: fix workflow
* shorter names
* fix rocblas install
* docs: clean up development.md
* consistent build dir removal in development.md
* silence -Wimplicit-function-declaration build warnings in ggml-cpu
* update readme
* update development readme
* llm: update library lookup logic now that there is one runner (#8587)
* tweak development.md
* update docs
* add windows cuda/rocm tests
---------
Co-authored-by: jmorganca <jmorganca@gmail.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Changes in #8002 introduced fixes for bugs with mangling JSON Schemas.
It also fixed a bug where the server would silently fail when clients
requested invalid formats. It also, unfortunately, introduced a bug
where the server would reject requests with an empty format, which
should be allowed.
The change in #8127 updated the code to allow the empty format, but also
reintroduced the regression where the server would silently fail when
the format was set, but invalid.
This commit fixes both regressions. The server does not reject the empty
format, but it does reject invalid formats. It also adds tests to help
us catch regressions in the future.
Also, the updated code provides a more detailed error message when a
client sends a non-empty, but invalid format, echoing the invalid format
in the response.
This commits also takes the opportunity to remove superfluous linter
checks.
Previously we decoded and re-encoded JSON schemas during validation,
which served no purpose since json.RawMessage already validates JSON
syntax. Worse, the re-encoding lost field ordering from the original
schema, which affects inference quality during step-by-step reasoning.
While fixing this ordering issue by using json.RawMessage directly,
testing revealed that schema_to_grammar (from llama.cpp) also fails to
preserve field order during grammar generation. This appears to be the
root cause of inference degradation.
This change prevents us from mangling the user's original schema order,
but we still need to address the ordering issue in schema_to_grammar.
That will be a separate change.
Updates #7978
* llama: wire up builtin runner
This adds a new entrypoint into the ollama CLI to run the cgo built runner.
On Mac arm64, this will have GPU support, but on all other platforms it will
be the lowest common denominator CPU build. After we fully transition
to the new Go runners more tech-debt can be removed and we can stop building
the "default" runner via make and rely on the builtin always.
* build: Make target improvements
Add a few new targets and help for building locally.
This also adjusts the runner lookup to favor local builds, then
runners relative to the executable, and finally payloads.
* Support customized CPU flags for runners
This implements a simplified custom CPU flags pattern for the runners.
When built without overrides, the runner name contains the vector flag
we check for (AVX) to ensure we don't try to run on unsupported systems
and crash. If the user builds a customized set, we omit the naming
scheme and don't check for compatibility. This avoids checking
requirements at runtime, so that logic has been removed as well. This
can be used to build GPU runners with no vector flags, or CPU/GPU
runners with additional flags (e.g. AVX512) enabled.
* Use relative paths
If the user checks out the repo in a path that contains spaces, make gets
really confused so use relative paths for everything in-repo to avoid breakage.
* Remove payloads from main binary
* install: clean up prior libraries
This removes support for v0.3.6 and older versions (before the tar bundle)
and ensures we clean up prior libraries before extracting the bundle(s).
Without this change, runners and dependent libraries could leak when we
update and lead to subtle runtime errors.
Users get confused by "Failed to acquire semaphore" error="context canceled"
messages in the logs, which are actually clients giving up. While there could be
a legitimate hang bug in the system, sometimes this is just short client timeouts
with an overloaded system, so this should help users understand what's going on
better.
Many model crashes are masked behind "An existing connection was forcibly closed by the remote host"
This captures that common error message and wires in any detected errors from the log.
This also adds the deepseek context shift error to the known errors we capture.
Llama.cpp sometimes returns NULL as a return value to report an
error. We should explicitly check for this and convert it to a Go
error rather than putting NULL in our data structures and waiting
for it to blow up later.
* fix(ext_server): Port llama.cpp sampling refactors to ext_server
This was a fairly large changeset. I closely followed the changes here:
df270ef745
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(server.cpp): Refactor server.cpp logging for llama.cpp overhaul
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Bump llama.cpp to the latest master with `granite` support
This does not yet have granite MoE support, but that can come in a
follow up PR
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(patches): Update all patches (except solar-pro) to work with bumped llama.cpp
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(solar): Update solar patch for llama.cpp bump
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(llama.cpp): Bump llama.cpp for granitemoe support
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(llama.cpp): Bump llama.cpp for granitemoe support
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(solar): Update the solar-pro patch for latest llama.cpp bump
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(llama.cpp): Bump to the latest master of llama.cpp
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(patches): Update all patches for latest bump
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(llama): Always run sync.sh from the right directory
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama/patches): Update llama patches
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(llama)!: Rough sync with llama.cpp submodule
There are a number of changes that will need to be propagated to llama.go
before any of this works!
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama/patches): Add a patch and update for missing ggml-impl.h include
This include is where the ggml_cgraph struct is defined. It is included in
many of the .c files to define the forward declartion in ggml.h. It seems
that with the subset of code included here, the import was somehow lost (or
out-of-order) when building, so adding this include to llama.cpp fixes the
missing definition.
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama/sync): Add missing ggml-cpu-impl.h copy-over in sync.sh
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Add missing log.cpp
This was added as part of the logging overhaul done in llama.cpp
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Overhaul use of sampling module for llama.cpp changes
The changes here reflect the changes made in the big llama.cpp sampling PR
https://github.com/ggerganov/llama.cpp/pull/9294
The sampling functionality is now broken into the base interface
(llama_sampler) and the generation implementation (gpt_sampler). The
changes here reflect that. Since the sampling.h/sampling.cpp code uses c++
STL headers, the sampling_ext.[h|cpp] wrapper is maintained to allow go to
access a pure-C interface.
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Fix the impl of SampleTokenGreedy for new sampling
I don't think this method is currently used, so it could probably just be
removed so that all sampling goes through the GPT interface, but in the
interest of doing no harm, this should keep the method working as expected.
Branch: IBMGraniteArchitectureSupport
* fix(llama): Remove unused SampleTokenGreedy
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(sync): Remove bash-specific change to sync.sh
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* chore(gofumpt): Format on llama.go to pass linting
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llm): Fix missing <thread> include in ext_server
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Remove TODO about grammar_first
This feature was not used/needed previously so should be fine without
plumbing it through now.
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Better naming for sampling wrapper and args
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Fix patch 05 to use new wrapper api and re-sync
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* runner: Flush pending responses before returning
If there are any pending reponses (such as from potential stop
tokens) then we should send them back before ending the sequence.
Otherwise, we can be missing tokens at the end of a response.
Fixes#6707
* fix(llama/sampling): Use gpt_sampler with a forward declaration
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Remove unnecessary patch for gguf impl header
This was caused by an earlier mistake in the embeddings patch that was
dereferencing the pointer instead of using the wrapper API.
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llm): Remove use of deprecated --log-disable flag
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Close can be called on an LLM server if the runner subprocess dies.
However, the Ollama scheduler code may not know about this yet and
still try to access it. In this case, it is important that 'cmd'
is still available as it is used to check on the status of the
subprocess. If this happens, Kill may be called twice on the subprocess -
that is fine.
In addition, model unloading may race with new accesses, so we should
hold a lock around this. This may result in the model being reloaded
after the first close call - this is also fine as close will be called
again later.
The recent change to applying patches leaves the submodule dirty based on
"new commits" being present. This ensures we clean up so the tree no longer
reports dirty after a `go generate ./...` run.
The Makefile was being a bit too aggressive in cleaning things up and would result in deleting the placeholder files which someone might accidentally commit.
* Re-introduce the llama package
This PR brings back the llama package, making it possible to call llama.cpp and
ggml APIs from Go directly via CGo. This has a few advantages:
- C APIs can be called directly from Go without needing to use the previous
"server" REST API
- On macOS and for CPU builds on Linux and Windows, Ollama can be built without
a go generate ./... step, making it easy to get up and running to hack on
parts of Ollama that don't require fast inference
- Faster build times for AVX,AVX2,CUDA and ROCM (a full build of all runners
takes <5 min on a fast CPU)
- No git submodule making it easier to clone and build from source
This is a big PR, but much of it is vendor code except for:
- llama.go CGo bindings
- example/: a simple example of running inference
- runner/: a subprocess server designed to replace the llm/ext_server package
- Makefile an as minimal as possible Makefile to build the runner package for
different targets (cpu, avx, avx2, cuda, rocm)
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
* cache: Clear old KV cache entries when evicting a slot
When forking a cache entry, if no empty slots are available we
evict the least recently used one and copy over the KV entries
from the closest match. However, this copy does not overwrite
existing values but only adds new ones. Therefore, we need to
clear the old slot first.
This change fixes two issues:
- The KV cache fills up and runs out of space even though we think
we are managing it correctly
- Performance gets worse over time as we use new cache entries that
are not hot in the processor caches
* doc: explain golang objc linker warning (#6830)
* llama: gather transitive dependencies for rocm for dist packaging (#6848)
* Refine go server makefiles to be more DRY (#6924)
This breaks up the monolithic Makefile for the Go based runners into a
set of utility files as well as recursive Makefiles for the runners.
Files starting with the name "Makefile" are buildable, while files that
end with ".make" are utilities to include in other Makefiles. This
reduces the amount of nearly identical targets and helps set a pattern
for future community contributions for new GPU runner architectures.
When we are ready to switch over to the Go runners, these files should
move to the top of the repo, and we should add targets for the main CLI,
as well as a helper "install" (put all the built binaries on the local
system in a runnable state) and "dist" target (generate the various
tar/zip files for distribution) for local developer use.
* llama: don't create extraneous directories (#6988)
* llama: Exercise the new build in CI (#6989)
Wire up some basic sanity testing in CI for the Go runner. GPU runners are not covered yet.
* llama: Refine developer docs for Go server (#6842)
This enhances the documentation for development focusing on the new Go
server. After we complete the transition further doc refinements
can remove the "transition" discussion.
* runner.go: Allocate batches for all sequences during init
We should tell the model that we could have full batches for all
sequences. We already do this when we allocate the batches but it was
missed during initialization.
* llama.go: Don't return nil from Tokenize on zero length input
Potentially receiving nil in a non-error condition is surprising to
most callers - it's better to return an empty slice.
* runner.go: Remove stop tokens from cache
If the last token is EOG then we don't return this and it isn't
present in the cache (because it was never submitted to Decode).
This works well for extending the cache entry with a new sequence.
However, for multi-token stop sequences, we won't return any of the
tokens but all but the last one will be in the cache. This means
when the conversation continues the cache will contain tokens that
don't overlap with the new prompt.
This works (we will pick up the portion where there is overlap) but
it causes unnecessary cache thrashing because we will fork the original
cache entry as it is not a perfect match.
By trimming the cache to the tokens that we actually return this
issue can be avoided.
* runner.go: Simplify flushing of pending tokens
* runner.go: Update TODOs
* runner.go: Don't panic when processing sequences
If there is an error processing a sequence, we should return a
clean HTTP error back to Ollama rather than panicing. This will
make us more resilient to transient failures.
Panics can still occur during startup as there is no way to serve
requests if that fails.
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: More accurately capture timings
Currently prompt processing time doesn't capture the that it takes
to tokenize the input, only decoding time. We should capture the
full process to more accurately reflect reality. This is especially
true once we start processing images where the initial processing
can take significant time. This is also more consistent with the
existing C++ runner.
* runner.go: Support for vision models
In addition to bringing feature parity with the C++ runner, this also
incorporates several improvements:
- Cache prompting works with images, avoiding the need to re-decode
embeddings for every message in a conversation
- Parallelism is supported, avoiding the need to restrict to one
sequence at a time. (Though for now Ollama will not schedule
them while we might need to fall back to the old runner.)
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: Move Unicode checking code and add tests
* runner.go: Export external cache members
Runner and cache are in the same package so the change doesn't
affect anything but it is more internally consistent.
* runner.go: Image embedding cache
Generating embeddings from images can take significant time (on
my machine between 100ms and 8s depending on the model). Although
we already cache the result of decoding these images, the embeddings
need to be regenerated every time. This is not necessary if we get
the same image over and over again, for example, during a conversation.
This currently uses a very small cache with a very simple algorithm
but it is easy to improve as is warranted.
* llama: catch up on patches
Carry forward solar-pro and cli-unicode patches
* runner.go: Don't re-allocate memory for every batch
We can reuse memory allocated from batch to batch since batch
size is fixed. This both saves the cost of reallocation as well
keeps the cache lines hot.
This results in a roughly 1% performance improvement for token
generation with Nvidia GPUs on Linux.
* runner.go: Default to classic input cache policy
The input cache as part of the go runner implemented a cache
policy that aims to maximize hit rate in both single and multi-
user scenarios. When there is a cache hit, the response is
very fast.
However, performance is actually slower when there is an input
cache miss due to worse GPU VRAM locality. This means that
performance is generally better overall for multi-user scenarios
(better input cache hit rate, locality was relatively poor already).
But worse for single users (input cache hit rate is about the same,
locality is now worse).
This defaults the policy back to the old one to avoid a regression
but keeps the new one available through an environment variable
OLLAMA_MULTIUSER_CACHE. This is left undocumented as the goal is
to improve this in the future to get the best of both worlds
without user configuration.
For inputs that result in cache misses, on Nvidia/Linux this
change improves performance by 31% for prompt processing and
13% for token generation.
* runner.go: Increase size of response channel
Generally the CPU can easily keep up with handling reponses that
are generated but there's no reason not to let generation continue
and handle things in larger batches if needed.
* llama: Add CI to verify all vendored changes have patches (#7066)
Make sure we don't accidentally merge changes in the vendored code
that aren't also reflected in the patches.
* llama: adjust clip patch for mingw utf-16 (#7065)
* llama: adjust clip patch for mingw utf-16
* llama: ensure static linking of runtime libs
Avoid runtime dependencies on non-standard libraries
* runner.go: Enable llamafile (all platforms) and BLAS (Mac OS)
These are two features that are shown on llama.cpp's system info
that are currently different between the two runners. On my test
systems the performance difference is very small to negligible
but it is probably still good to equalize the features.
* llm: Don't add BOS/EOS for tokenize requests
This is consistent with what server.cpp currently does. It affects
things like token processing counts for embedding requests.
* runner.go: Don't cache prompts for embeddings
Our integration with server.cpp implicitly disables prompt caching
because it is not part of the JSON object being parsed, this makes
the Go runner behavior similarly.
Prompt caching has been seen to affect the results of text completions
on certain hardware. The results are not wrong either way but they
are non-deterministic. However, embeddings seem to be affected even
on hardware that does not show this behavior for completions. For
now, it is best to maintain consistency with the existing behavior.
* runner.go: Adjust debug log levels
Add system info printed at startup and quiet down noisier logging.
* llama: fix compiler flag differences (#7082)
Adjust the flags for the new Go server to more closely match the
generate flow
* llama: refine developer docs (#7121)
* llama: doc and example clean up (#7122)
* llama: doc and example clean up
* llama: Move new dockerfile into llama dir
Temporary home until we fully transition to the Go server
* llama: runner doc cleanup
* llama.go: Add description for Tokenize error case
---------
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
* Unified arm/x86 windows installer
This adjusts the installer payloads to be architecture aware so we can cary
both amd64 and arm64 binaries in the installer, and install only the applicable
architecture at install time.
* Include arm64 in official windows build
* Harden schedule test for slow windows timers
This test seems to be a bit flaky on windows, so give it more time to converge