Most tensor backends try to optimize performance by using a lower
precision for matmuls. However, some operations (such as kq) on
some models are sensitive to this and require full precision.
There are two cases where we may not have an output after computing:
- Prompt processing where the length of the input exceeds the batch
size
- Internal memory management operations such as cache defrag and shift
Currently there is a mixture of int and int64 used when dealing with
tensor dimensions and shapes, which causes unnecessary conversions -
they all should be the same type.
In general, most interfaces (such as Pytorch) use int64 for
generality but most implementations (such as CUDA) use int32 for
performance. There isn't much benefit to us to being more flexible
than the implementations we are likely to run on.
In addition, as a practical matter, a model with a tensor with a single
dimension larger than 32 bits is unlikely to run on a 32-bit machine.
It is not common to return errors with close/free operations - most
people won't check it and even if they did there's probably not much
that can do. It's better to not give implementations false expectations.
feat: add new Ollama engine using ggml through cgo
This change introduces a new way to run pretrained models. It introduces 3 high level interfaces and a bunch of smaller helper interfaces to facilitate this.
- `model.Model` defines the interface for a model architecture. Models such as `llama` and `mllama`, which are provided as examples, can implement the model's forward propagation in the `Forward` method. This method will be called to generate completions. This interface can be found in `model/model.go`
- `ml.Backend` defines the interface for a backend tensor library, in this case `ggml`. Among other things, a Backend is responsible for loading a pretrained model into hardware (GPU, CPU, etc) and providing an interface for Models to access loaded tensors. This interface can be found in `ml/backend.go`
- `ml.Tensor` defines the interface for a tensor and tensor operations
This is the first implementation of the new engine. Follow up PRs will implement more features:
- non-greedy sampling (#8410)
- integration with Ollama and KV caching (#8301)
- more model support (#9080) with more coming soon
Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
* add build to .dockerignore
* test: only build one arch
* add build to .gitignore
* fix ccache path
* filter amdgpu targets
* only filter if autodetecting
* Don't clobber gpu list for default runner
This ensures the GPU specific environment variables are set properly
* explicitly set CXX compiler for HIP
* Update build_windows.ps1
This isn't complete, but is close. Dependencies are missing, and it only builds the "default" preset.
* build: add ollama subdir
* add .git to .dockerignore
* docs: update development.md
* update build_darwin.sh
* remove unused scripts
* llm: add cwd and build/lib/ollama to library paths
* default DYLD_LIBRARY_PATH to LD_LIBRARY_PATH in runner on macOS
* add additional cmake output vars for msvc
* interim edits to make server detection logic work with dll directories like lib/ollama/cuda_v12
* remove unncessary filepath.Dir, cleanup
* add hardware-specific directory to path
* use absolute server path
* build: linux arm
* cmake install targets
* remove unused files
* ml: visit each library path once
* build: skip cpu variants on arm
* build: install cpu targets
* build: fix workflow
* shorter names
* fix rocblas install
* docs: clean up development.md
* consistent build dir removal in development.md
* silence -Wimplicit-function-declaration build warnings in ggml-cpu
* update readme
* update development readme
* llm: update library lookup logic now that there is one runner (#8587)
* tweak development.md
* update docs
* add windows cuda/rocm tests
---------
Co-authored-by: jmorganca <jmorganca@gmail.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>