47 Commits

Author SHA1 Message Date
Eries Trisnadi
dc13813a03
server: allow vscode-file origins (#9313) 2025-02-27 10:39:43 -08:00
Parth Sareen
314573bfe8
config: allow setting context length through env var (#8938)
* envconfig: allow setting context length through env var
2025-02-24 13:26:35 -08:00
Blake Mizerany
68bac1e0a6
server: group routes by category and purpose (#9270)
The route assembly in Handler lacked clear organization making it
difficult scan for routes and their relationships to each other. This
commit aims to fix that by reordering the assembly of routes to group
them by category and purpose.

Also, be more specific about what "config" refers to (it is about CORS
if you were wondering... I was.)
2025-02-21 21:02:26 -08:00
Jesse Gross
ed443a0393 Runner for Ollama engine
This provides integration with the new Ollama engine
(5824541 next ollama runner (#7913)) and the rest of the Ollama
infrastructure such as the runner and Ollama server.

In addition, it also builds out the KV cache infrastructure to
support requirements of how Ollama runs models such as:
 - Parallel processing
 - Memory management for defragmentation and shifting
 - Multi-modal modals

Both old and new engines continue to be supported. By default, only
the old engine is used. To enable the new engine:

Start the server with the OLLAMA_NEW_ENGINE environment variable set:
OLLAMA_NEW_ENGINE=1 ./ollama serve

Start a model that is supported by the Ollama engine. This one is Llama 3.1 8b Q4_K_M:
./ollama run jessegross/llama3.1
2025-02-13 17:09:26 -08:00
Michael Yang
dcfb7a105c
next build (#8539)
* add build to .dockerignore

* test: only build one arch

* add build to .gitignore

* fix ccache path

* filter amdgpu targets

* only filter if autodetecting

* Don't clobber gpu list for default runner

This ensures the GPU specific environment variables are set properly

* explicitly set CXX compiler for HIP

* Update build_windows.ps1

This isn't complete, but is close.  Dependencies are missing, and it only builds the "default" preset.

* build: add ollama subdir

* add .git to .dockerignore

* docs: update development.md

* update build_darwin.sh

* remove unused scripts

* llm: add cwd and build/lib/ollama to library paths

* default DYLD_LIBRARY_PATH to LD_LIBRARY_PATH in runner on macOS

* add additional cmake output vars for msvc

* interim edits to make server detection logic work with dll directories like lib/ollama/cuda_v12

* remove unncessary filepath.Dir, cleanup

* add hardware-specific directory to path

* use absolute server path

* build: linux arm

* cmake install targets

* remove unused files

* ml: visit each library path once

* build: skip cpu variants on arm

* build: install cpu targets

* build: fix workflow

* shorter names

* fix rocblas install

* docs: clean up development.md

* consistent build dir removal in development.md

* silence -Wimplicit-function-declaration build warnings in ggml-cpu

* update readme

* update development readme

* llm: update library lookup logic now that there is one runner (#8587)

* tweak development.md

* update docs

* add windows cuda/rocm tests

---------

Co-authored-by: jmorganca <jmorganca@gmail.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-01-29 15:03:38 -08:00
Daniel Hiltgen
4879a234c4
build: Make target improvements (#7499)
* llama: wire up builtin runner

This adds a new entrypoint into the ollama CLI to run the cgo built runner.
On Mac arm64, this will have GPU support, but on all other platforms it will
be the lowest common denominator CPU build.  After we fully transition
to the new Go runners more tech-debt can be removed and we can stop building
the "default" runner via make and rely on the builtin always.

* build: Make target improvements

Add a few new targets and help for building locally.
This also adjusts the runner lookup to favor local builds, then
runners relative to the executable, and finally payloads.

* Support customized CPU flags for runners

This implements a simplified custom CPU flags pattern for the runners.
When built without overrides, the runner name contains the vector flag
we check for (AVX) to ensure we don't try to run on unsupported systems
and crash.  If the user builds a customized set, we omit the naming
scheme and don't check for compatibility.  This avoids checking
requirements at runtime, so that logic has been removed as well.  This
can be used to build GPU runners with no vector flags, or CPU/GPU
runners with additional flags (e.g. AVX512) enabled.

* Use relative paths

If the user checks out the repo in a path that contains spaces, make gets
really confused so use relative paths for everything in-repo to avoid breakage.

* Remove payloads from main binary

* install: clean up prior libraries

This removes support for v0.3.6 and older versions (before the tar bundle)
and ensures we clean up prior libraries before extracting the bundle(s).
Without this change, runners and dependent libraries could leak when we
update and lead to subtle runtime errors.
2024-12-10 09:47:19 -08:00
Sam
1bdab9fdb1
llm: introduce k/v context quantization (vRAM improvements) (#6279) 2024-12-03 15:57:19 -08:00
Daniel Hiltgen
d7c94e0ca6
Better support for AMD multi-GPU on linux (#7212)
* Better support for AMD multi-GPU

This resolves a number of problems related to AMD multi-GPU setups on linux.

The numeric IDs used by rocm are not the same as the numeric IDs exposed in
sysfs although the ordering is consistent.  We have to count up from the first
valid gfx (major/minor/patch with non-zero values) we find starting at zero.

There are 3 different env vars for selecting GPUs, and only ROCR_VISIBLE_DEVICES
supports UUID based identification, so we should favor that one, and try
to use UUIDs if detected to avoid potential ordering bugs with numeric IDs

* ROCR_VISIBLE_DEVICES only works on linux

Use the numeric ID only HIP_VISIBLE_DEVICES on windows
2024-10-26 14:04:14 -07:00
Jeffrey Morgan
48708ca0d5
server: allow vscode-webview origin (#7273) 2024-10-19 14:06:41 -07:00
Jeffrey Morgan
96efd9052f
Re-introduce the llama package (#5034)
* Re-introduce the llama package

This PR brings back the llama package, making it possible to call llama.cpp and
ggml APIs from Go directly via CGo. This has a few advantages:

- C APIs can be called directly from Go without needing to use the previous
  "server" REST API
- On macOS and for CPU builds on Linux and Windows, Ollama can be built without
  a go generate ./... step, making it easy to get up and running to hack on
  parts of Ollama that don't require fast inference
- Faster build times for AVX,AVX2,CUDA and ROCM (a full build of all runners
  takes <5 min on a fast CPU)
- No git submodule making it easier to clone and build from source

This is a big PR, but much of it is vendor code except for:

- llama.go CGo bindings
- example/: a simple example of running inference
- runner/: a subprocess server designed to replace the llm/ext_server package
- Makefile an as minimal as possible Makefile to build the runner package for
  different targets (cpu, avx, avx2, cuda, rocm)

Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>

* cache: Clear old KV cache entries when evicting a slot

When forking a cache entry, if no empty slots are available we
evict the least recently used one and copy over the KV entries
from the closest match. However, this copy does not overwrite
existing values but only adds new ones. Therefore, we need to
clear the old slot first.

This change fixes two issues:
 - The KV cache fills up and runs out of space even though we think
   we are managing it correctly
 - Performance gets worse over time as we use new cache entries that
   are not hot in the processor caches

* doc: explain golang objc linker warning (#6830)

* llama: gather transitive dependencies for rocm for dist packaging (#6848)

* Refine go server makefiles to be more DRY (#6924)

This breaks up the monolithic Makefile for the Go based runners into a
set of utility files as well as recursive Makefiles for the runners.
Files starting with the name "Makefile" are buildable, while files that
end with ".make" are utilities to include in other Makefiles.  This
reduces the amount of nearly identical targets and helps set a pattern
for future community contributions for new GPU runner architectures.

When we are ready to switch over to the Go runners, these files should
move to the top of the repo, and we should add targets for the main CLI,
as well as a helper "install" (put all the built binaries on the local
system in a runnable state) and "dist" target (generate the various
tar/zip files for distribution) for local developer use.

* llama: don't create extraneous directories (#6988)

* llama: Exercise the new build in CI (#6989)

Wire up some basic sanity testing in CI for the Go runner.  GPU runners are not covered yet.

* llama: Refine developer docs for Go server (#6842)

This enhances the documentation for development focusing on the new Go
server.  After we complete the transition further doc refinements
can remove the "transition" discussion.

* runner.go: Allocate batches for all sequences during init

We should tell the model that we could have full batches for all
sequences. We already do this when we allocate the batches but it was
missed during initialization.

* llama.go: Don't return nil from Tokenize on zero length input

Potentially receiving nil in a non-error condition is surprising to
most callers - it's better to return an empty slice.

* runner.go: Remove stop tokens from cache

If the last token is EOG then we don't return this and it isn't
present in the cache (because it was never submitted to Decode).
This works well for extending the cache entry with a new sequence.

However, for multi-token stop sequences, we won't return any of the
tokens but all but the last one will be in the cache. This means
when the conversation continues the cache will contain tokens that
don't overlap with the new prompt.

This works (we will pick up the portion where there is overlap) but
it causes unnecessary cache thrashing because we will fork the original
cache entry as it is not a perfect match.

By trimming the cache to the tokens that we actually return this
issue can be avoided.

* runner.go: Simplify flushing of pending tokens

* runner.go: Update TODOs

* runner.go: Don't panic when processing sequences

If there is an error processing a sequence, we should return a
clean HTTP error back to Ollama rather than panicing. This will
make us more resilient to transient failures.

Panics can still occur during startup as there is no way to serve
requests if that fails.

Co-authored-by: jmorganca <jmorganca@gmail.com>

* runner.go: More accurately capture timings

Currently prompt processing time doesn't capture the that it takes
to tokenize the input, only decoding time. We should capture the
full process to more accurately reflect reality. This is especially
true once we start processing images where the initial processing
can take significant time. This is also more consistent with the
existing C++ runner.

* runner.go: Support for vision models

In addition to bringing feature parity with the C++ runner, this also
incorporates several improvements:
 - Cache prompting works with images, avoiding the need to re-decode
   embeddings for every message in a conversation
 - Parallelism is supported, avoiding the need to restrict to one
   sequence at a time. (Though for now Ollama will not schedule
   them while we might need to fall back to the old runner.)

Co-authored-by: jmorganca <jmorganca@gmail.com>

* runner.go: Move Unicode checking code and add tests

* runner.go: Export external cache members

Runner and cache are in the same package so the change doesn't
affect anything but it is more internally consistent.

* runner.go: Image embedding cache

Generating embeddings from images can take significant time (on
my machine between 100ms and 8s depending on the model). Although
we already cache the result of decoding these images, the embeddings
need to be regenerated every time. This is not necessary if we get
the same image over and over again, for example, during a conversation.

This currently uses a very small cache with a very simple algorithm
but it is easy to improve as is warranted.

* llama: catch up on patches

Carry forward solar-pro and cli-unicode patches

* runner.go: Don't re-allocate memory for every batch

We can reuse memory allocated from batch to batch since batch
size is fixed. This both saves the cost of reallocation as well
keeps the cache lines hot.

This results in a roughly 1% performance improvement for token
generation with Nvidia GPUs on Linux.

* runner.go: Default to classic input cache policy

The input cache as part of the go runner implemented a cache
policy that aims to maximize hit rate in both single and multi-
user scenarios. When there is a cache hit, the response is
very fast.

However, performance is actually slower when there is an input
cache miss due to worse GPU VRAM locality. This means that
performance is generally better overall for multi-user scenarios
(better input cache hit rate, locality was relatively poor already).
But worse for single users (input cache hit rate is about the same,
locality is now worse).

This defaults the policy back to the old one to avoid a regression
but keeps the new one available through an environment variable
OLLAMA_MULTIUSER_CACHE. This is left undocumented as the goal is
to improve this in the future to get the best of both worlds
without user configuration.

For inputs that result in cache misses, on Nvidia/Linux this
change improves performance by 31% for prompt processing and
13% for token generation.

* runner.go: Increase size of response channel

Generally the CPU can easily keep up with handling reponses that
are generated but there's no reason not to let generation continue
and handle things in larger batches if needed.

* llama: Add CI to verify all vendored changes have patches (#7066)

Make sure we don't accidentally merge changes in the vendored code
that aren't also reflected in the patches.

* llama: adjust clip patch for mingw utf-16 (#7065)

* llama: adjust clip patch for mingw utf-16

* llama: ensure static linking of runtime libs

Avoid runtime dependencies on non-standard libraries

* runner.go: Enable llamafile (all platforms) and BLAS (Mac OS)

These are two features that are shown on llama.cpp's system info
that are currently different between the two runners. On my test
systems the performance difference is very small to negligible
but it is probably still good to equalize the features.

* llm: Don't add BOS/EOS for tokenize requests

This is consistent with what server.cpp currently does. It affects
things like token processing counts for embedding requests.

* runner.go: Don't cache prompts for embeddings

Our integration with server.cpp implicitly disables prompt caching
because it is not part of the JSON object being parsed, this makes
the Go runner behavior similarly.

Prompt caching has been seen to affect the results of text completions
on certain hardware. The results are not wrong either way but they
are non-deterministic. However, embeddings seem to be affected even
on hardware that does not show this behavior for completions. For
now, it is best to maintain consistency with the existing behavior.

* runner.go: Adjust debug log levels

Add system info printed at startup and quiet down noisier logging.

* llama: fix compiler flag differences (#7082)

Adjust the flags for the new Go server to more closely match the
generate flow

* llama: refine developer docs (#7121)

* llama: doc and example clean up (#7122)

* llama: doc and example clean up

* llama: Move new dockerfile into llama dir

Temporary home until we fully transition to the Go server

* llama: runner doc cleanup

* llama.go: Add description for Tokenize error case

---------

Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
2024-10-08 08:53:54 -07:00
Daniel Hiltgen
cd5c8f6471
Optimize container images for startup (#6547)
* Optimize container images for startup

This change adjusts how to handle runner payloads to support
container builds where we keep them extracted in the filesystem.
This makes it easier to optimize the cpu/cuda vs cpu/rocm images for
size, and should result in faster startup times for container images.

* Refactor payload logic and add buildx support for faster builds

* Move payloads around

* Review comments

* Converge to buildx based helper scripts

* Use docker buildx action for release
2024-09-12 12:10:30 -07:00
Michael Yang
dddb72e084 add *_proxy for debugging 2024-09-10 09:43:35 -07:00
Daniel Hiltgen
6719097649
llm: make load time stall duration configurable via OLLAMA_LOAD_TIMEOUT
With the new very large parameter models, some users are willing to wait for
a very long time for models to load.
2024-09-05 14:00:08 -07:00
Daniel Hiltgen
b05c9e83d9
Introduce GPU Overhead env var (#5922)
Provide a mechanism for users to set aside an amount of VRAM on each GPU
to make room for other applications they want to start after Ollama, or workaround
memory prediction bugs
2024-09-05 13:46:35 -07:00
Michael Yang
142cbb722d
Merge pull request #6482 from ollama/mxyng/client-path
passthrough OLLAMA_HOST path to client
2024-08-30 09:40:34 -07:00
Daniel Hiltgen
93ea9240ae
Move ollama executable out of bin dir (#6535) 2024-08-27 16:19:00 -07:00
Michael Yang
386af6c1a0 passthrough OLLAMA_HOST path to client 2024-08-23 13:23:28 -07:00
Daniel Hiltgen
88bb9e3328 Adjust layout to bin+lib/ollama 2024-08-19 09:38:53 -07:00
Daniel Hiltgen
74d45f0102 Refactor linux packaging
This adjusts linux to follow a similar model to windows with a discrete archive
(zip/tgz) to cary the primary executable, and dependent libraries. Runners are
still carried as payloads inside the main binary

Darwin retain the payload model where the go binary is fully self contained.
2024-08-19 09:38:53 -07:00
Michael Yang
85d9d73a72 comments 2024-07-22 11:49:03 -07:00
Michael Yang
78140a712c cleanup tests 2024-07-22 11:49:03 -07:00
Michael Yang
0f1910129f int 2024-07-22 11:30:07 -07:00
Michael Yang
e2c3f6b3e2 string 2024-07-22 11:27:52 -07:00
Michael Yang
8570c1c0ef keepalive 2024-07-22 11:27:22 -07:00
Michael Yang
55cd3ddcca bool 2024-07-22 11:27:21 -07:00
Michael Yang
66fe77f084 models 2024-07-22 11:26:12 -07:00
Michael Yang
d1a5227cad origins 2024-07-22 11:25:30 -07:00
Michael Yang
4f1afd575d host 2024-07-22 11:25:30 -07:00
Michael Yang
35b89b2eab rfc: dynamic environ lookup 2024-07-22 11:25:30 -07:00
Daniel Hiltgen
cc269ba094 Remove no longer supported max vram var
The OLLAMA_MAX_VRAM env var was a temporary workaround for OOM
scenarios.  With Concurrency this was no longer wired up, and the simplistic
value doesn't map to multi-GPU setups.  Users can still set `num_gpu`
to limit memory usage to avoid OOM if we get our predictions wrong.
2024-07-22 09:08:11 -07:00
Anatoli Babenia
0d16eb310e
fix: use envconfig.ModelsDir directly (#4821)
* Co-authored-by: Anatoli Babenia <anatoli@rainforce.org>

Co-authored-by: Maas Lalani <maas@lalani.dev>
2024-07-03 15:36:11 -07:00
Daniel Hiltgen
955f2a4e03 Only set default keep_alive on initial model load
This change fixes the handling of keep_alive so that if client
request omits the setting, we only set this on initial load.  Once
the model is loaded, if new requests leave this unset, we'll keep
whatever keep_alive was there.
2024-07-03 15:29:56 -07:00
Daniel Hiltgen
173b550438 Remove default auto from help message
This may confuse users thinking "auto" is an acceptable string - it must be numeric
2024-07-01 09:48:05 -07:00
Daniel Hiltgen
9929751cc8 Disable concurrency for AMD + Windows
Until ROCm v6.2 ships, we wont be able to get accurate free memory
reporting on windows, which makes automatic concurrency too risky.
Users can still opt-in but will need to pay attention to model sizes otherwise they may thrash/page VRAM or cause OOM crashes.
All other platforms and GPUs have accurate VRAM reporting wired
up now, so we can turn on concurrency by default.
2024-06-21 15:45:05 -07:00
Daniel Hiltgen
17b7186cd7 Enable concurrency by default
This adjusts our default settings to enable multiple models and parallel
requests to a single model.  Users can still override these by the same
env var settings as before.  Parallel has a direct impact on
num_ctx, which in turn can have a significant impact on small VRAM GPUs
so this change also refines the algorithm so that when parallel is not
explicitly set by the user, we try to find a reasonable default that fits
the model on their GPU(s).  As before, multiple models will only load
concurrently if they fully fit in VRAM.
2024-06-21 15:45:05 -07:00
Daniel Hiltgen
d34d88e417 Revert "Revert "gpu: add env var for detecting Intel oneapi gpus (#5076)""
This reverts commit 755b4e4fc291366595ed7bfb37c2a91ff5834df8.
2024-06-19 08:57:41 -07:00
Wang,Zhe
755b4e4fc2 Revert "gpu: add env var for detecting Intel oneapi gpus (#5076)"
This reverts commit 163cd3e77c42aafd003b9cb884b3a51cdbaea106.
2024-06-19 08:59:58 +08:00
Jeffrey Morgan
163cd3e77c
gpu: add env var for detecting Intel oneapi gpus (#5076)
* gpu: add env var for detecting intel oneapi gpus

* fix build error
2024-06-16 20:09:05 -04:00
Daniel Hiltgen
6be309e1bd Centralize GPU configuration vars
This should aid in troubleshooting by capturing and reporting the GPU
settings at startup in the logs along with all the other server settings.
2024-06-14 15:59:10 -07:00
Daniel Hiltgen
5e8ff556cb Support forced spreading for multi GPU
Our default behavior today is to try to fit into a single GPU if possible.
Some users would prefer the old behavior of always spreading across
multiple GPUs even if the model can fit into one.  This exposes that
tunable behavior.
2024-06-14 14:51:40 -07:00
Patrick Devine
94618b2365
add OLLAMA_MODELS to envconfig (#5029) 2024-06-13 12:52:03 -07:00
Patrick Devine
c69bc19e46
move OLLAMA_HOST to envconfig (#5009) 2024-06-12 18:48:16 -04:00
royjhan
1a29e9a879
API app/browser access (#4879)
* API app/browser access

* Add tauri (resolves #2291, #4791, #3799, #4388)
2024-06-06 15:19:03 -07:00
Michael Yang
c895a7d13f some gocritic 2024-06-04 11:13:30 -07:00
Michael Yang
dad7a987ae nosprintfhostport 2024-06-04 11:13:30 -07:00
Lei Jitang
a03be18189
Fix OLLAMA_LLM_LIBRARY with wrong map name and add more env vars to help message (#4663)
* envconfig/config.go: Fix wrong description of OLLAMA_LLM_LIBRARY

Signed-off-by: Lei Jitang <leijitang@outlook.com>

* serve: Add more env to help message of ollama serve

Add more enviroment variables to `ollama serve --help`
to let users know what can be configurated.

Signed-off-by: Lei Jitang <leijitang@outlook.com>

---------

Signed-off-by: Lei Jitang <leijitang@outlook.com>
2024-05-30 09:36:51 -07:00
Patrick Devine
4cc3be3035
Move envconfig and consolidate env vars (#4608) 2024-05-24 14:57:15 -07:00