- Both `/api/generate` and `/api/chat` now accept a `"think"`
option that allows specifying whether thinking mode should be on or
not
- Templates get passed this new option so, e.g., qwen3's template can
put `/think` or `/no_think` in the system prompt depending on the
value of the setting
- Models' thinking support is inferred by inspecting model templates.
The prefix and suffix the parser uses to identify thinking support is
also automatically inferred from templates
- Thinking control & parsing is opt-in via the API to prevent breaking
existing API consumers. If the `"think"` option is not specified, the
behavior is unchanged from previous versions of ollama
- Add parsing for thinking blocks in both streaming/non-streaming mode
in both `/generate` and `/chat`
- Update the CLI to make use of these changes. Users can pass `--think`
or `--think=false` to control thinking, or during an interactive
session they can use the commands `/set think` or `/set nothink`
- A `--hidethinking` option has also been added to the CLI. This makes
it easy to use thinking in scripting scenarios like
`ollama run qwen3 --think --hidethinking "my question here"` where you
just want to see the answer but still want the benefits of thinking
models
When the same model is being reloaded rapidly with client connections
being canceled before the model finishes loading, the queued unload
event could cause a leak of runners by deleting a different runner from
the loaded list.
Fall back to alternative quantization types when a tensor's dimensions aren't divisible by the block size required for the original desired quantization type. If retried quantization types fail, the system ultimately falls back to F16 (half-precision floating point) which has a block size of 1 and can handle any tensor dimension.
* remove support for multiple ggufs in a single file
this was an attempt to make it easier to import multimodal models into
ollama. this was rarely used and error prone so remove it
* fix: create fused model from blob
Currently, when the backend is created, the tensors are loaded at the
same time, which is a slow operation. This separates them to be two
steps:
- Create backend, including enumerating tensors and memory allocation
- Loading tensor data
This allows more flexibility in managing model loading.
The quantization PR didn't block all unsupported file types,
which this PR fixes. It also updates the API docs to reflect
the now reduced set of supported types.
When creating a quantized model from safetensors we
need the array KV values to be loaded.Changing this
value to -1 loads the KV values on the returned
layer to be used and saved during quantization.
the stream accumulator exits as soon as it sees `api.ProgressResponse(status="success")` which isn't strictly correctly
since some requests may have multiple successes, e.g. `/api/create` when the source model needs to be pulled.
If a model is loading, and the request context is canceled during the load
by a client closing the connection, and another request is inbound for the
same model with a different configuration (context size, etc.) thus requiring
a reload, two unload events can be in flight. The first shuts down the
original model load, but the second one caused the loss of the new
reloading runner reference, thus triggering the leak.
The primary fix is detecting the duplicate unload and ignoring the second
instance. The load routine is also hardened to ensure we detect
clobbering an already present runner and unload it with a warning.
* Move quantization logic to GGML via new backend
This moves the model aware logic to Go code and calls GGMLs quantization code for model creation.
* Remove "add model quantizations"
This is no longer needed now that quantization is implemented in Go+GGML code directly.
This enhances our logging in the scheduler. The initial "waiting for server" log
no longer claims an initial error state (now "not responding" which better reflects
the actual state). Runners now have slog wiring to report more details about the
runner, including PID.
* strip out thinking tags in message history for qwen3 & r1
This is in advance of "proper" support where we'll make reasoning
configurable and we'll parse out thinking/reasoning tags and provide
them to the caller. These models expect there to be no thinking tags in
the message history, so this should improve quality
* parse model names instead of hacky prefix check
* Adjust initial scheduler refCount
Ensure we only set the refCount on success
* sched: fix lock order inversion deadlock
Under certain race conditions, there was a scenario where the scheduler would
get into a deadlock while trying to update free space information while a model
was trying to unload.
this is in part to "pay" for #10452, which doubled the default context length. The combination isn't fully neutral though, because even though the old 4x2k limit and the new 2x4k limit are memory equivalent, the 1x fallback is larger with 4k
the first call to http.ResponseWriter.Write implicitly calls WriteHeader
with http.StatusOK if it hasn't already been called. once WriteHeader
has been called, subsequent calls has no effect. Write is called when
JSON encoding progressUpdateJSON{}. calls to
http.ResponseWriter.WriteHeader after the first encode is useless and
produces a warning:
http: superfluous response.WriteHeader call from github.com/ollama/ollama/server/internal/registry.(*statusCodeRecorder).WriteHeader (server.go:77)
* increase default context length to 4096
We lower the default numParallel from 4 to 2 and use these "savings" to
double the default context length from 2048 to 4096.
We're memory neutral in cases when we previously would've used
numParallel == 4, but we add the following mitigation to handle some
cases where we would have previously fallen back to 1x2048 due to low
VRAM: we decide between 2048 and 4096 using a runtime check, choosing
2048 if we're on a one GPU system with total VRAM of <= 4 GB. We
purposefully don't check the available VRAM because we don't want the
context window size to change unexpectedly based on the available VRAM.
We plan on making the default even larger, but this is a relatively
low-risk change we can make to quickly double it.
* fix tests
add an explicit context length so they don't get truncated. The code
that converts -1 from being a signal for doing a runtime check isn't
running as part of these tests.
* tweak small gpu message
* clarify context length default
also make it actually show up in `ollama serve --help`
Previously, the pull handler would send an error message in the Status
field, this prevented the client from using the message as a signal to
stop. In the case of the "run" command, it would follow the pull with a
"show" which would print a nearly identical "not found" message for
unresolved models.
Fixes#10307
This removes the extra flushProgress() at the end of handlePull. It is
unnecessary because final progress updates are flushed in all cases of
the main select loop.
The completed and received counters must work in tandem and the code
should better reflect that. Previously, the act of updating them was 2-3
lines of code duplicated in multiple places. This consolidates them into
a single update closure for easy reading and maintenance.
This also simplifies error handling in places where we can use a return
parameter and defer to handle the error case for updates.
Also, remove the old Layer field from the trackingReader struct.