ollama/convert/convert_mistral.go
jmorganca 4530661799 wip
2025-03-22 23:20:39 -07:00

195 lines
6.2 KiB
Go

package convert
import (
"cmp"
"fmt"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs/ggml"
)
type mistral3Model struct {
ModelParameters
ImageTokenIndex uint32 `json:"image_token_index"`
SpatialMergeSize uint32 `json:"spatial_merge_size"`
VisionFeatureLayer int32 `json:"vision_feature_layer"`
TextModel struct {
NumHiddenLayers uint32 `json:"num_hidden_layers"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RopeTheta float32 `json:"rope_theta"`
RMSNormEPS float32 `json:"rms_norm_eps"`
HeadDim uint32 `json:"head_dim"`
SlidingWindow *uint32 `json:"sliding_window"`
HiddenAct string `json:"hidden_act"`
VocabSize uint32 `json:"vocab_size"`
} `json:"text_config"`
VisionModel struct {
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
ImageSize uint32 `json:"image_size"`
NumChannels uint32 `json:"num_channels"`
PatchSize uint32 `json:"patch_size"`
HeadDim uint32 `json:"head_dim"`
HiddenAct string `json:"hidden_act"`
RopeTheta float32 `json:"rope_theta"`
} `json:"vision_config"`
MultiModalProjectorBias bool `json:"multimodal_projector_bias"`
ProjectorHiddenAct string `json:"projector_hidden_act"`
}
func (p *mistral3Model) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "mistral3"
kv["mistral3.vocab_size"] = p.TextModel.VocabSize
// Text configuration
kv["mistral3.block_count"] = p.TextModel.NumHiddenLayers
kv["mistral3.context_length"] = p.TextModel.MaxPositionEmbeddings
kv["mistral3.embedding_length"] = p.TextModel.HiddenSize
kv["mistral3.feed_forward_length"] = p.TextModel.IntermediateSize
kv["mistral3.attention.head_count"] = p.TextModel.NumAttentionHeads
kv["mistral3.attention.head_count_kv"] = p.TextModel.NumKeyValueHeads
kv["mistral3.attention.layer_norm_rms_epsilon"] = p.TextModel.RMSNormEPS
kv["mistral3.attention.key_length"] = p.TextModel.HeadDim
kv["mistral3.attention.value_length"] = p.TextModel.HeadDim
kv["mistral3.rope.dimension_count"] = p.TextModel.HiddenSize / p.TextModel.NumHiddenLayers
kv["mistral3.rope.freq_base"] = p.TextModel.RopeTheta
// Vision configuration
kv["mistral3.vision.block_count"] = p.VisionModel.NumHiddenLayers
kv["mistral3.vision.embedding_length"] = p.VisionModel.HiddenSize
kv["mistral3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
kv["mistral3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
kv["mistral3.vision.attention.key_length"] = p.VisionModel.HeadDim
kv["mistral3.vision.image_size"] = p.VisionModel.ImageSize
kv["mistral3.vision.patch_size"] = p.VisionModel.PatchSize
kv["mistral3.vision.num_channels"] = p.VisionModel.NumChannels
// kv["mistral3.vision.attention.layer_norm_epsilon"] = 1e-05 // Default value
kv["mistral3.vision.rope.freq_base"] = p.VisionModel.RopeTheta
// Multimodal configuration
kv["mistral3.image_token_index"] = p.ImageTokenIndex
kv["mistral3.spatial_merge_size"] = p.SpatialMergeSize
kv["mistral3.mm.projector_bias"] = p.MultiModalProjectorBias
if p.ProjectorHiddenAct != "" {
kv["mistral3.mm.projector_hidden_act"] = p.ProjectorHiddenAct
}
return kv
}
func (p *mistral3Model) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
for _, t := range ts {
if strings.HasSuffix(t.Name(), "attn_q.weight") ||
strings.HasSuffix(t.Name(), "attn_k.weight") {
t.SetRepacker(p.repack)
}
// Skip certain vision model tensors that might need special handling
if strings.HasPrefix(t.Name(), "patch_merger.") || strings.HasPrefix(t.Name(), "pre_mm_projector_output_norm.") {
continue
}
out = append(out, ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *mistral3Model) Replacements() []string {
return []string{
"language_model.model.norm", "output_norm",
"language_model.model.", "",
"language_model.", "",
"layers", "blk",
"transformer.layers", "blk",
"vision_tower", "v",
"ln_pre", "encoder_norm",
"input_layernorm", "attn_norm",
"post_attention_layernorm", "ffn_norm",
"embed_tokens", "token_embd",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"mlp.down_proj", "ffn_down",
"mlp.gate_proj", "ffn_gate",
"mlp.up_proj", "ffn_up",
"attention.q_proj", "attn_q",
"attention.k_proj", "attn_k",
"attention.v_proj", "attn_v",
"attention.o_proj", "attn_output",
"attention_norm", "attn_norm",
"feed_forward.gate_proj", "ffn_gate",
"feed_forward.down_proj", "ffn_down",
"feed_forward.up_proj", "ffn_up",
"patch_merger.merging_layer", "merger",
"multi_modal_projector", "mm",
"ffn_norm", "ffn_norm",
"lm_head", "output",
}
}
func (p *mistral3Model) repack(name string, data []float32, shape []uint64) ([]float32, error) {
var dims []int
for _, dim := range shape {
dims = append(dims, int(dim))
}
var heads uint32
if strings.HasSuffix(name, "attn_q.weight") {
heads = p.TextModel.NumAttentionHeads
} else if strings.HasSuffix(name, "attn_k.weight") {
heads = cmp.Or(p.TextModel.NumKeyValueHeads, p.TextModel.NumAttentionHeads)
} else {
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if err := n.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}