mirror of
https://github.com/ollama/ollama.git
synced 2025-04-01 00:19:43 +02:00
feat: add new Ollama engine using ggml through cgo This change introduces a new way to run pretrained models. It introduces 3 high level interfaces and a bunch of smaller helper interfaces to facilitate this. - `model.Model` defines the interface for a model architecture. Models such as `llama` and `mllama`, which are provided as examples, can implement the model's forward propagation in the `Forward` method. This method will be called to generate completions. This interface can be found in `model/model.go` - `ml.Backend` defines the interface for a backend tensor library, in this case `ggml`. Among other things, a Backend is responsible for loading a pretrained model into hardware (GPU, CPU, etc) and providing an interface for Models to access loaded tensors. This interface can be found in `ml/backend.go` - `ml.Tensor` defines the interface for a tensor and tensor operations This is the first implementation of the new engine. Follow up PRs will implement more features: - non-greedy sampling (#8410) - integration with Ollama and KV caching (#8301) - more model support (#9080) with more coming soon Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
92 lines
1.9 KiB
Go
92 lines
1.9 KiB
Go
package convert
|
|
|
|
import (
|
|
"strings"
|
|
|
|
"github.com/pdevine/tensor"
|
|
"github.com/pdevine/tensor/native"
|
|
|
|
"github.com/ollama/ollama/fs/ggml"
|
|
)
|
|
|
|
type gemma2Adapter struct {
|
|
AdapterParameters
|
|
}
|
|
|
|
var _ AdapterConverter = (*gemma2Adapter)(nil)
|
|
|
|
func (p *gemma2Adapter) KV(baseKV ggml.KV) ggml.KV {
|
|
kv := p.AdapterParameters.KV()
|
|
kv["general.architecture"] = "gemma2"
|
|
return kv
|
|
}
|
|
|
|
func (p *gemma2Adapter) Tensors(ts []Tensor) []ggml.Tensor {
|
|
var out []ggml.Tensor
|
|
for _, t := range ts {
|
|
shape := t.Shape()
|
|
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
|
|
(strings.HasSuffix(t.Name(), "weight.lora_b") && shape[0] < shape[1]) {
|
|
shape[0], shape[1] = shape[1], shape[0]
|
|
t.SetRepacker(p.repack)
|
|
}
|
|
|
|
out = append(out, ggml.Tensor{
|
|
Name: t.Name(),
|
|
Kind: t.Kind(),
|
|
Shape: t.Shape(),
|
|
WriterTo: t,
|
|
})
|
|
}
|
|
|
|
return out
|
|
}
|
|
|
|
func (p *gemma2Adapter) Replacements() []string {
|
|
return []string{
|
|
"base_model.model.", "",
|
|
"model.layers", "blk",
|
|
"self_attn.q_proj", "attn_q",
|
|
"self_attn.k_proj", "attn_k",
|
|
"self_attn.v_proj", "attn_v",
|
|
"self_attn.o_proj", "attn_output",
|
|
"mlp.gate_proj", "ffn_gate",
|
|
"mlp.down_proj", "ffn_down",
|
|
"mlp.up_proj", "ffn_up",
|
|
"lora_A.weight", "weight.lora_a",
|
|
"lora_B.weight", "weight.lora_b",
|
|
"lora_a", "weight.lora_a",
|
|
"lora_b", "weight.lora_b",
|
|
}
|
|
}
|
|
|
|
func (p *gemma2Adapter) repack(name string, data []float32, shape []uint64) ([]float32, error) {
|
|
dims := []int{int(shape[1]), int(shape[0])}
|
|
|
|
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
|
|
|
if err := n.T(1, 0); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if err := n.Reshape(dims...); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if err := n.Transpose(); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
ts, err := native.SelectF32(n, 1)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
var f32s []float32
|
|
for _, t := range ts {
|
|
f32s = append(f32s, t...)
|
|
}
|
|
|
|
return f32s, nil
|
|
}
|