mirror of
https://github.com/ollama/ollama.git
synced 2025-04-05 02:19:51 +02:00
Mistral is a popular research lab making open source models. This updates the forward pass of llama architecture models to support both llama models and mistral models by accounting for additional metadata present in mistral models, and finding the correct dimensions for the output projection.
625 lines
20 KiB
Go
625 lines
20 KiB
Go
package kvcache
|
|
|
|
import (
|
|
"math"
|
|
"slices"
|
|
"testing"
|
|
|
|
"github.com/ollama/ollama/fs"
|
|
"github.com/ollama/ollama/ml"
|
|
"github.com/ollama/ollama/model/input"
|
|
)
|
|
|
|
type testCase struct {
|
|
name string
|
|
in []float32
|
|
inShape []int
|
|
seqs []int
|
|
pos []int32
|
|
expected []float32
|
|
expectedShape []int
|
|
expectedMask []float32
|
|
}
|
|
|
|
func TestStore(t *testing.T) {
|
|
backend := &testBackend{}
|
|
cache := NewCausalCache(nil)
|
|
defer cache.Close()
|
|
|
|
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
|
|
|
|
tests := []testCase{
|
|
{
|
|
name: "FirstBatch",
|
|
in: []float32{111, 211, 121, 221, 131, 231, 112, 212, 122, 222, 132, 232, 113, 213, 123, 223, 133, 233, 114, 214, 124, 224, 134, 234},
|
|
inShape: []int{2, 3, 4},
|
|
seqs: []int{0, 0, 0, 0},
|
|
pos: []int32{0, 1, 2, 3},
|
|
expected: []float32{111, 211, 121, 221, 131, 231, 112, 212, 122, 222, 132, 232, 113, 213, 123, 223, 133, 233, 114, 214, 124, 224, 134, 234},
|
|
expectedShape: []int{2, 3, 4},
|
|
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0},
|
|
},
|
|
{
|
|
name: "SecondBatch",
|
|
in: []float32{115, 215, 125, 225, 135, 235},
|
|
inShape: []int{2, 3, 1},
|
|
seqs: []int{0},
|
|
pos: []int32{4},
|
|
expected: []float32{111, 211, 121, 221, 131, 231, 112, 212, 122, 222, 132, 232, 113, 213, 123, 223, 133, 233, 114, 214, 124, 224, 134, 234, 115, 215, 125, 225, 135, 235},
|
|
expectedShape: []int{2, 3, 5},
|
|
expectedMask: []float32{0, 0, 0, 0, 0},
|
|
},
|
|
}
|
|
|
|
testCache(t, backend, cache, tests)
|
|
}
|
|
|
|
func TestSWA(t *testing.T) {
|
|
backend := &testBackend{}
|
|
cache := NewSWACache(1, nil)
|
|
defer cache.Close()
|
|
|
|
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
|
|
|
|
tests := []testCase{
|
|
{
|
|
name: "FirstBatch",
|
|
in: []float32{1, 2, 3, 4},
|
|
inShape: []int{1, 1, 4},
|
|
seqs: []int{0, 0, 0, 0},
|
|
pos: []int32{0, 1, 2, 3},
|
|
expected: []float32{1, 2, 3, 4},
|
|
expectedShape: []int{1, 1, 4},
|
|
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
|
|
},
|
|
{
|
|
name: "SecondBatch",
|
|
in: []float32{5, 6},
|
|
inShape: []int{1, 1, 2},
|
|
seqs: []int{0, 0},
|
|
pos: []int32{4, 5},
|
|
expected: []float32{5, 6, 3, 4},
|
|
expectedShape: []int{1, 1, 4},
|
|
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1))},
|
|
},
|
|
}
|
|
|
|
testCache(t, backend, cache, tests)
|
|
}
|
|
|
|
func TestSequences(t *testing.T) {
|
|
backend := &testBackend{}
|
|
cache := NewCausalCache(nil)
|
|
defer cache.Close()
|
|
|
|
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
|
|
|
|
tests := []testCase{
|
|
{
|
|
name: "FirstBatch",
|
|
in: []float32{1, 2, 3, 4},
|
|
inShape: []int{1, 1, 4},
|
|
seqs: []int{0, 0, 1, 1},
|
|
pos: []int32{0, 1, 0, 1},
|
|
expected: []float32{1, 2, 3, 4},
|
|
expectedShape: []int{1, 1, 4},
|
|
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
|
|
},
|
|
{
|
|
name: "SecondBatch",
|
|
in: []float32{5, 6},
|
|
inShape: []int{1, 1, 2},
|
|
seqs: []int{0, 1},
|
|
pos: []int32{2, 2},
|
|
expected: []float32{1, 2, 3, 4, 5, 6},
|
|
expectedShape: []int{1, 1, 6},
|
|
expectedMask: []float32{0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), 0},
|
|
},
|
|
}
|
|
|
|
testCache(t, backend, cache, tests)
|
|
}
|
|
|
|
func TestRemove(t *testing.T) {
|
|
backend := &testBackend{}
|
|
cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
|
return key.Add(ctx, shift), nil
|
|
})
|
|
defer cache.Close()
|
|
|
|
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
|
|
|
|
tests := []testCase{
|
|
{
|
|
name: "FirstBatch",
|
|
in: []float32{1, 2, 3, 4},
|
|
inShape: []int{1, 1, 4},
|
|
seqs: []int{0, 0, 1, 1},
|
|
pos: []int32{0, 1, 0, 1},
|
|
expected: []float32{1, 2, 3, 4},
|
|
expectedShape: []int{1, 1, 4},
|
|
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
|
|
},
|
|
}
|
|
|
|
testCache(t, backend, cache, tests)
|
|
|
|
err := cache.Remove(0, 1, math.MaxInt32)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
tests = []testCase{
|
|
{
|
|
name: "RemoveEnd",
|
|
in: []float32{5, 6},
|
|
inShape: []int{1, 1, 2},
|
|
seqs: []int{0, 1},
|
|
pos: []int32{1, 2},
|
|
expected: []float32{1, 2, 3, 4, 5, 6},
|
|
expectedShape: []int{1, 1, 6},
|
|
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), 0},
|
|
},
|
|
}
|
|
|
|
testCache(t, backend, cache, tests)
|
|
|
|
err = cache.Remove(0, 0, 1)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
tests = []testCase{
|
|
{
|
|
name: "RemoveMiddle",
|
|
in: []float32{7, 8},
|
|
inShape: []int{1, 1, 2},
|
|
seqs: []int{0, 0},
|
|
pos: []int32{1, 2},
|
|
expected: []float32{7, 8, 3, 4, 4},
|
|
expectedShape: []int{1, 1, 5},
|
|
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0},
|
|
},
|
|
}
|
|
|
|
testCache(t, backend, cache, tests)
|
|
}
|
|
|
|
func TestDefrag(t *testing.T) {
|
|
backend := &testBackend{}
|
|
cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
|
return key.Add(ctx, shift), nil
|
|
})
|
|
defer cache.Close()
|
|
|
|
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
|
|
|
|
tests := []testCase{
|
|
{
|
|
name: "FirstBatch",
|
|
in: []float32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
|
|
inShape: []int{1, 1, 16},
|
|
seqs: []int{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
|
pos: []int32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
|
|
expected: []float32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
|
|
expectedShape: []int{1, 1, 16},
|
|
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
|
},
|
|
}
|
|
|
|
testCache(t, backend, cache, tests)
|
|
|
|
err := cache.Remove(0, 2, 4)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
err = cache.Remove(0, 13, math.MaxInt32)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
tests = []testCase{
|
|
{
|
|
name: "Defrag",
|
|
in: []float32{17, 18, 19},
|
|
inShape: []int{1, 1, 3},
|
|
seqs: []int{0, 0, 0},
|
|
pos: []int32{16, 17, 18},
|
|
expected: []float32{1, 2, 12, 13, 3, 4, 5, 6, 7, 8, 9, 10, 11, 17, 18, 19},
|
|
expectedShape: []int{1, 1, 16},
|
|
expectedMask: []float32{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
|
},
|
|
}
|
|
|
|
testCache(t, backend, cache, tests)
|
|
}
|
|
|
|
func TestCopy(t *testing.T) {
|
|
backend := &testBackend{}
|
|
cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) { return key, nil })
|
|
defer cache.Close()
|
|
|
|
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
|
|
|
|
tests := []testCase{
|
|
{
|
|
name: "FirstBatch",
|
|
in: []float32{1, 2, 3, 4},
|
|
inShape: []int{1, 1, 4},
|
|
seqs: []int{0, 0, 0, 0},
|
|
pos: []int32{0, 1, 2, 3},
|
|
expected: []float32{1, 2, 3, 4},
|
|
expectedShape: []int{1, 1, 4},
|
|
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0},
|
|
},
|
|
}
|
|
|
|
testCache(t, backend, cache, tests)
|
|
|
|
cache.CopyPrefix(0, 1, 2)
|
|
|
|
tests = []testCase{
|
|
{
|
|
name: "Copy",
|
|
in: []float32{5, 6},
|
|
inShape: []int{1, 1, 2},
|
|
seqs: []int{1, 1},
|
|
pos: []int32{3, 4},
|
|
expected: []float32{1, 2, 3, 4, 5, 6},
|
|
expectedShape: []int{1, 1, 6},
|
|
expectedMask: []float32{0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
|
|
},
|
|
}
|
|
|
|
testCache(t, backend, cache, tests)
|
|
}
|
|
|
|
func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase) {
|
|
for _, test := range tests {
|
|
t.Run(test.name, func(t *testing.T) {
|
|
context := backend.NewContext()
|
|
defer context.Close()
|
|
|
|
err := cache.StartForward(context, input.Batch{Positions: test.pos, Sequences: test.seqs})
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
cache.SetLayer(0)
|
|
tensor, _ := context.FromFloatSlice(test.in, test.inShape...)
|
|
cache.Put(context, tensor, tensor)
|
|
|
|
out, _, mask := cache.Get(context)
|
|
|
|
context.Forward(out, mask).Compute(out, mask)
|
|
|
|
if !slices.Equal(out.Floats(), test.expected) || !slices.Equal(out.Shape(), test.expectedShape) || !slices.Equal(mask.Floats(), test.expectedMask) {
|
|
t.Errorf("TestCache: have %v (shape %v); want %v (shape %v); mask: have %v (shape %v) want %v", out.Floats(), out.Shape(), test.expected, test.expectedShape, mask.Floats(), mask.Shape(), test.expectedMask)
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
func TestCanResume(t *testing.T) {
|
|
backend := &testBackend{}
|
|
windowSize := int32(4)
|
|
cache := NewSWACache(windowSize, nil)
|
|
defer cache.Close()
|
|
|
|
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
|
|
|
|
context := backend.NewContext()
|
|
defer context.Close()
|
|
|
|
err := cache.StartForward(context, input.Batch{
|
|
Positions: []int32{0, 1, 2, 3},
|
|
Sequences: []int{0, 0, 0, 0},
|
|
})
|
|
if err != nil {
|
|
t.Fatalf("StartForward failed: %v", err)
|
|
}
|
|
|
|
cache.SetLayer(0)
|
|
tensor, _ := context.FromFloatSlice([]float32{1, 2, 3, 4}, 1, 1, 4)
|
|
cache.Put(context, tensor, tensor)
|
|
|
|
// with window size 4, nothing has slid out of the window yet
|
|
if !cache.CanResume(0, 0) {
|
|
t.Errorf("CanResume(0, 0) = false, want true (within window)")
|
|
}
|
|
if !cache.CanResume(0, 1) {
|
|
t.Errorf("CanResume(0, 1) = false, want true (within window)")
|
|
}
|
|
if !cache.CanResume(0, 2) {
|
|
t.Errorf("CanResume(0, 2) = false, want true (within window)")
|
|
}
|
|
if !cache.CanResume(0, 3) {
|
|
t.Errorf("CanResume(0, 3) = false, want true (latest position)")
|
|
}
|
|
|
|
// shift window by adding position 4
|
|
err = cache.StartForward(context, input.Batch{
|
|
Positions: []int32{4, 5},
|
|
Sequences: []int{0, 0},
|
|
})
|
|
if err != nil {
|
|
t.Fatalf("StartForward failed: %v", err)
|
|
}
|
|
|
|
cache.SetLayer(0)
|
|
tensor, _ = context.FromFloatSlice([]float32{5, 6}, 1, 1, 2)
|
|
cache.Put(context, tensor, tensor)
|
|
|
|
// only the latest position has overlapping windows
|
|
if cache.CanResume(0, 0) {
|
|
t.Errorf("after shift: CanResume(0, 0) = true, want false (outside window)")
|
|
}
|
|
if cache.CanResume(0, 1) {
|
|
t.Errorf("after shift: CanResume(0, 1) = true, want false (outside window)")
|
|
}
|
|
if cache.CanResume(0, 2) {
|
|
t.Errorf("after shift: CanResume(0, 2) = true, want false (outside window)")
|
|
}
|
|
if cache.CanResume(0, 3) {
|
|
t.Errorf("after shift: CanResume(0, 3) = true, want false (outside window)")
|
|
}
|
|
if cache.CanResume(0, 4) {
|
|
t.Errorf("after shift: CanResume(0, 4) = true, want false (outside window)")
|
|
}
|
|
if !cache.CanResume(0, 5) {
|
|
t.Errorf("after shift: CanResume(0, 5) = false, want true (latest position)")
|
|
}
|
|
}
|
|
|
|
type testBackend struct{}
|
|
|
|
func (b *testBackend) Config() fs.Config {
|
|
panic("not implemented")
|
|
}
|
|
|
|
func (b *testBackend) Get(name string) ml.Tensor {
|
|
panic("not implemented")
|
|
}
|
|
|
|
func (b *testBackend) NewContext() ml.Context {
|
|
return &testContext{}
|
|
}
|
|
|
|
func (b *testBackend) NewContextSize(int) ml.Context {
|
|
return &testContext{}
|
|
}
|
|
|
|
func (b *testBackend) SystemInfo() string {
|
|
return "not implemented"
|
|
}
|
|
|
|
type testContext struct{}
|
|
|
|
func (c *testContext) Empty(dtype ml.DType, shape ...int) ml.Tensor {
|
|
total := 0
|
|
|
|
if len(shape) > 0 {
|
|
total = 1
|
|
for _, s := range shape {
|
|
total *= s
|
|
}
|
|
}
|
|
|
|
return &testTensor{dtype: dtype, elementSize: 4, data: make([]float32, total), shape: shape}
|
|
}
|
|
|
|
func (c *testContext) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
|
|
return c.Empty(dtype, shape...)
|
|
}
|
|
|
|
func (c *testContext) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
|
|
t := c.Empty(ml.DTypeF32, shape...).(*testTensor)
|
|
|
|
copy(t.data, s)
|
|
|
|
return t, nil
|
|
}
|
|
|
|
func (c *testContext) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
|
|
f := make([]float32, len(s))
|
|
for i := range f {
|
|
f[i] = float32(s[i])
|
|
}
|
|
|
|
out, _ := c.FromFloatSlice(f, shape...)
|
|
out.(*testTensor).dtype = ml.DTypeI32
|
|
|
|
return out, nil
|
|
}
|
|
|
|
func (c *testContext) Input() ml.Context { return c }
|
|
func (c *testContext) Layer(int) ml.Context { return c }
|
|
|
|
func (c *testContext) Forward(...ml.Tensor) ml.Context { return c }
|
|
|
|
func (c *testContext) Compute(...ml.Tensor) {}
|
|
|
|
func (c *testContext) MaxGraphNodes() int {
|
|
return 10
|
|
}
|
|
|
|
func (c *testContext) Close() {}
|
|
|
|
type testTensor struct {
|
|
dtype ml.DType
|
|
elementSize int
|
|
data []float32
|
|
shape []int
|
|
}
|
|
|
|
func (t *testTensor) Dim(n int) int {
|
|
return t.shape[n]
|
|
}
|
|
|
|
func (t *testTensor) Stride(n int) int {
|
|
stride := t.elementSize
|
|
for i := range n {
|
|
stride *= t.shape[i]
|
|
}
|
|
|
|
return stride
|
|
}
|
|
|
|
func (t *testTensor) Shape() []int {
|
|
return t.shape
|
|
}
|
|
|
|
func (t *testTensor) DType() ml.DType {
|
|
return t.dtype
|
|
}
|
|
|
|
func (t *testTensor) Bytes() []byte {
|
|
panic("not implemented")
|
|
}
|
|
|
|
func (t *testTensor) Floats() []float32 {
|
|
out := make([]float32, len(t.data))
|
|
copy(out, t.data)
|
|
return out
|
|
}
|
|
|
|
func (t *testTensor) Neg(ctx ml.Context) ml.Tensor {
|
|
out := ctx.Empty(t.DType(), t.Shape()...).(*testTensor)
|
|
for i := range out.data {
|
|
out.data[i] = -t.data[i]
|
|
}
|
|
return out
|
|
}
|
|
|
|
func (t *testTensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
out := ctx.Empty(t.DType(), t.Shape()...).(*testTensor)
|
|
|
|
for i := range out.data {
|
|
out.data[i] = t.data[i] + t2.(*testTensor).data[i]
|
|
}
|
|
|
|
return out
|
|
}
|
|
|
|
func (t *testTensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
panic("not implemented")
|
|
}
|
|
|
|
func (t *testTensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
panic("not implemented")
|
|
}
|
|
|
|
func (t *testTensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
panic("not implemented")
|
|
}
|
|
|
|
func (t *testTensor) Softmax(ctx ml.Context) ml.Tensor {
|
|
panic("not implemented")
|
|
}
|
|
|
|
func (t *testTensor) LayerNorm(ctx ml.Context, weight, bias ml.Tensor, eps float32) ml.Tensor {
|
|
panic("not implemented")
|
|
}
|
|
|
|
func (t *testTensor) RMSNorm(ctx ml.Context, weight ml.Tensor, eps float32) ml.Tensor {
|
|
panic("not implemented")
|
|
}
|
|
|
|
func (t *testTensor) Scale(ctx ml.Context, s float64) ml.Tensor {
|
|
panic("not implemented")
|
|
}
|
|
|
|
func (t *testTensor) AvgPool1D(ctx ml.Context, k, s, p int) ml.Tensor {
|
|
panic("not implemented")
|
|
}
|
|
|
|
func (t *testTensor) AvgPool2D(ctx ml.Context, k, s int, p float32) ml.Tensor {
|
|
panic("not implemented")
|
|
}
|
|
|
|
func (t *testTensor) Conv2D(ctx ml.Context, weight ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
|
|
panic("not implemented")
|
|
}
|
|
|
|
func (t *testTensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, dim, ropeType uint32, base, scale float32) ml.Tensor {
|
|
panic("not implemented")
|
|
}
|
|
|
|
func (t *testTensor) IM2Col(ctx ml.Context, weight ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
|
|
panic("not implemented")
|
|
}
|
|
|
|
func (t *testTensor) Cos(ctx ml.Context) ml.Tensor { panic("not implemented") }
|
|
func (t *testTensor) Sin(ctx ml.Context) ml.Tensor { panic("not implemented") }
|
|
func (t *testTensor) Tanh(ctx ml.Context) ml.Tensor { panic("not implemented") }
|
|
func (t *testTensor) GELU(ctx ml.Context) ml.Tensor { panic("not implemented") }
|
|
func (t *testTensor) SILU(ctx ml.Context) ml.Tensor { panic("not implemented") }
|
|
|
|
func (t *testTensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
|
|
panic("not implemented")
|
|
}
|
|
|
|
func (t *testTensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
|
|
offset /= t.elementSize
|
|
|
|
var s []int
|
|
|
|
switch len(shape) {
|
|
case 1:
|
|
s = []int{shape[0]}
|
|
case 5:
|
|
s = []int{shape[0], shape[2], shape[4]}
|
|
default:
|
|
panic("unsupported number of dimensions")
|
|
}
|
|
|
|
context := &testContext{}
|
|
|
|
view := context.Empty(t.dtype, s...).(*testTensor)
|
|
view.data = t.data[offset : offset+len(view.data)]
|
|
|
|
return view
|
|
}
|
|
|
|
func (t *testTensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
|
|
panic("not implemented")
|
|
}
|
|
|
|
func (t *testTensor) Contiguous(ctx ml.Context) ml.Tensor {
|
|
panic("not implemented")
|
|
}
|
|
|
|
func (t *testTensor) Set(ctx ml.Context, t2 ml.Tensor, offset int, strides ...int) ml.Tensor {
|
|
panic("not implemented")
|
|
}
|
|
|
|
func (t *testTensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
|
|
panic("not implemented")
|
|
}
|
|
|
|
func (t *testTensor) Unpad(ctx ml.Context, shape ...int) ml.Tensor {
|
|
panic("not implemented")
|
|
}
|
|
|
|
func (t *testTensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
|
|
panic("not implemented")
|
|
}
|
|
|
|
func (t *testTensor) Repeat(ctx ml.Context, dim, n int) ml.Tensor { panic("not implemented") }
|
|
|
|
func (t *testTensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
|
|
panic("not implemented")
|
|
}
|
|
|
|
func (t *testTensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
panic("not implemented")
|
|
}
|
|
|
|
func (t *testTensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
copy(t2.(*testTensor).data, t.data)
|
|
return nil
|
|
}
|
|
|
|
func (t *testTensor) Duplicate(ctx ml.Context) ml.Tensor { panic("not implemented") }
|