ollama/llama/patches/0011-llama-Ensure-KV-cache-is-fully-defragmented.patch

243 lines
9.4 KiB
Diff

From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Jesse Gross <jesse@ollama.com>
Date: Fri, 13 Dec 2024 16:11:59 -0800
Subject: [PATCH] llama: Ensure KV cache is fully defragmented.
Sometimes the KV cache requires defragmentation even without
triggering the threshold heuristic. In this case, decoding
will not being able to find a KV cache slot. This is particularly
difficult for the caller to handle if it happens in between
ubatches. To avoid this, we should immediately trigger a defrag.
In addition, a heavily fragmented cache can require more than
max_moves to defragment. Currently, we stop when we hit the limit
but this can leave a cache that still does not have adequate space
even after defragmentation is triggered. Instead, we should do
multiple batches of processing until everything is complete.
---
src/llama.cpp | 99 ++++++++++++++++++++++++---------------------------
1 file changed, 46 insertions(+), 53 deletions(-)
diff --git a/src/llama.cpp b/src/llama.cpp
index 8f7902df..01854fce 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -1054,6 +1054,13 @@ static struct ggml_tensor * llm_build_rwkv6_channel_mix(
return ggml_mul(ctx, r, llm_build_lora_mm(lctx, ctx, layer->channel_mix_value, k));
}
+// block of KV slots to move when defragging
+struct llama_kv_defrag_move {
+ uint32_t src;
+ uint32_t dst;
+ uint32_t len;
+};
+
struct llm_build_context {
const llama_model & model;
llama_context & lctx;
@@ -1230,35 +1237,23 @@ struct llm_build_context {
return gf;
}
- struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
+ struct ggml_cgraph * build_defrag(const std::vector<struct llama_kv_defrag_move> & moves) {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, model.max_nodes(), false);
- for (uint32_t i = 0; i < ids.size(); ++i) {
- const uint32_t id = ids[i];
-
- if (i == id || id == ids.size()) {
- continue;
- }
-
- uint32_t nm = 1;
-
- while (i + nm < ids.size() && ids[i + nm] == id + nm) {
- nm++;
- }
-
+ for (const auto & move : moves) {
for (int il = 0; il < n_layer; ++il) {
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
- n_embd_k_gqa, nm,
+ n_embd_k_gqa, move.len,
ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
- ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
+ ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*move.src));
ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
- n_embd_k_gqa, nm,
+ n_embd_k_gqa, move.len,
ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
- ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
+ ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*move.dst));
ggml_tensor * view_v_src;
ggml_tensor * view_v_dst;
@@ -1266,31 +1261,29 @@ struct llm_build_context {
if (flash_attn) {
// NOTE: the V cache is not transposed when using flash attention
view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
- n_embd_v_gqa, nm,
+ n_embd_v_gqa, move.len,
ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
- ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*i));
+ ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*move.src));
view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
- n_embd_v_gqa, nm,
+ n_embd_v_gqa, move.len,
ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
- ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*id));
+ ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*move.dst));
} else {
view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
- nm, n_embd_v_gqa,
+ move.len, n_embd_v_gqa,
ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
- ggml_row_size(kv_self.v_l[il]->type, i));
+ ggml_row_size(kv_self.v_l[il]->type, move.src));
view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
- nm, n_embd_v_gqa,
+ move.len, n_embd_v_gqa,
ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
- ggml_row_size(kv_self.v_l[il]->type, id));
+ ggml_row_size(kv_self.v_l[il]->type, move.dst));
}
ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
}
-
- i += nm - 1;
}
//LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
@@ -8508,7 +8501,7 @@ struct llm_build_context {
}
};
-static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
+static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<struct llama_kv_defrag_move> & moves) {
llama_ubatch dummy = {};
dummy.equal_seqs = true;
@@ -8518,7 +8511,7 @@ static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const
llm.init();
- struct ggml_cgraph * result = llm.build_defrag(ids);
+ struct ggml_cgraph * result = llm.build_defrag(moves);
llm.free();
@@ -8956,7 +8949,12 @@ static int llama_prepare_ubatch(
kv_self.head = 0;
}
- const auto slot = llama_kv_cache_find_slot(kv_self, ubatch);
+ auto slot = llama_kv_cache_find_slot(kv_self, ubatch);
+ if (!slot) {
+ llama_kv_cache_defrag(kv_self);
+ llama_kv_cache_update(&lctx);
+ slot = llama_kv_cache_find_slot(kv_self, ubatch);
+ }
if (!slot) {
return 1;
}
@@ -9431,8 +9429,8 @@ static void llama_kv_cache_defrag_impl(struct llama_context & lctx) {
//const int64_t t_start = ggml_time_us();
- // number of cells moved
- uint32_t n_moves = 0;
+ // groups of cells moved
+ std::vector<struct llama_kv_defrag_move> moves;
// each move requires 6*n_layer tensors (see build_defrag)
// - source view, destination view, copy operation
@@ -9496,19 +9494,11 @@ static void llama_kv_cache_defrag_impl(struct llama_context & lctx) {
// are we moving a continuous block of memory?
bool cont = false;
- // should we stop searching for the next move?
- bool stop = false;
-
// go back and move the nf cells to the hole
for (; i1 < n_kv; ++i1) {
auto & cell1 = kv_self.cells[i1];
if (cell1.is_empty() || ids[i1] != n_kv) {
- if (n_moves == max_moves) {
- stop = true;
- break;
- }
-
cont = false;
continue;
}
@@ -9524,8 +9514,10 @@ static void llama_kv_cache_defrag_impl(struct llama_context & lctx) {
kv_self.head = n_used;
if (!cont) {
- n_moves++;
+ moves.push_back({i1, i0 + nf, 1});
cont = true;
+ } else {
+ moves.back().len++;
}
nf++;
@@ -9535,22 +9527,16 @@ static void llama_kv_cache_defrag_impl(struct llama_context & lctx) {
}
}
- if (stop || n_moves == max_moves) {
- break;
- }
-
//LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
i0 += nh - 1;
}
- if (n_moves == 0) {
+ if (moves.size() == 0) {
return;
}
- //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
-
- //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
+ //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", moves.size());
#if 0
// CPU defrag
@@ -9625,11 +9611,18 @@ static void llama_kv_cache_defrag_impl(struct llama_context & lctx) {
#else
// ggml_graph defrag
- ggml_backend_sched_reset(lctx.sched.get());
+ for (std::size_t i = 0; i < moves.size(); i += max_moves) {
+ std::vector<struct llama_kv_defrag_move> chunk;
+ auto end = std::min(i + max_moves, moves.size());
+ chunk.assign(moves.begin() + i, moves.begin() + end);
- ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
+ ggml_backend_sched_reset(lctx.sched.get());
+
+ //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*chunk.size()*n_layer);
+ ggml_cgraph * gf = llama_build_graph_defrag(lctx, chunk);
- llama_graph_compute(lctx, gf, lctx.cparams.n_threads, lctx.threadpool);
+ llama_graph_compute(lctx, gf, lctx.cparams.n_threads, lctx.threadpool);
+ }
#endif
//const int64_t t_end = ggml_time_us();