mirror of
https://github.com/ollama/ollama.git
synced 2025-07-16 12:52:36 +02:00
* update patches * cherry pick metal mean kernel * cherry pick cuda mean kernel * gemma3n
5090 lines
240 KiB
Diff
5090 lines
240 KiB
Diff
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
|
From: Aman Gupta <amangupta052@gmail.com>
|
|
Date: Sun, 22 Jun 2025 12:39:54 +0800
|
|
Subject: [PATCH] CUDA: add mean operation (#14313)
|
|
|
|
* CUDA: add mean operation
|
|
|
|
* add back sum_rows_f32_cuda
|
|
|
|
* Review: early exit if col!=0
|
|
---
|
|
ggml/src/ggml-cuda/common.cuh | 20 +
|
|
ggml/src/ggml-cuda/ggml-cuda.cu | 5 +
|
|
ggml/src/ggml-cuda/mean.cu | 19 +
|
|
ggml/src/ggml-cuda/mean.cuh | 3 +
|
|
ggml/src/ggml-cuda/sumrows.cu | 23 +-
|
|
ggml/src/ggml-cuda/sumrows.cuh | 1 -
|
|
tests/test-backend-ops.cpp | 2990 ++++++++++++++++---------------
|
|
7 files changed, 1554 insertions(+), 1507 deletions(-)
|
|
create mode 100644 ggml/src/ggml-cuda/mean.cu
|
|
create mode 100644 ggml/src/ggml-cuda/mean.cuh
|
|
|
|
diff --git a/ggml/src/ggml-cuda/common.cuh b/ggml/src/ggml-cuda/common.cuh
|
|
index 64fb4ff4..5b9a0fe3 100644
|
|
--- a/ggml/src/ggml-cuda/common.cuh
|
|
+++ b/ggml/src/ggml-cuda/common.cuh
|
|
@@ -362,6 +362,26 @@ static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
|
|
#endif // FP16_AVAILABLE
|
|
}
|
|
|
|
+// Row reduction kernel template - compute sum (norm=false) or mean (norm=true)
|
|
+template<bool norm>
|
|
+static __global__ void reduce_rows_f32(const float * x, float * dst, const int ncols) {
|
|
+ const int row = blockIdx.x;
|
|
+ const int col = threadIdx.x;
|
|
+
|
|
+ float sum = 0.0f;
|
|
+ for (int i = col; i < ncols; i += blockDim.x) {
|
|
+ sum += x[row * ncols + i];
|
|
+ }
|
|
+
|
|
+ sum = warp_reduce_sum(sum);
|
|
+
|
|
+ if (col != 0) {
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ dst[row] = norm ? sum / ncols : sum;
|
|
+}
|
|
+
|
|
template<int width = WARP_SIZE>
|
|
static __device__ __forceinline__ float warp_reduce_max(float x) {
|
|
#pragma unroll
|
|
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
|
|
index 4c829153..9e64e5ae 100644
|
|
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
|
|
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
|
|
@@ -35,6 +35,7 @@
|
|
#include "ggml-cuda/ssm-scan.cuh"
|
|
#include "ggml-cuda/sum.cuh"
|
|
#include "ggml-cuda/sumrows.cuh"
|
|
+#include "ggml-cuda/mean.cuh"
|
|
#include "ggml-cuda/tsembd.cuh"
|
|
#include "ggml-cuda/unary.cuh"
|
|
#include "ggml-cuda/upscale.cuh"
|
|
@@ -2322,6 +2323,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
|
case GGML_OP_SUM_ROWS:
|
|
ggml_cuda_op_sum_rows(ctx, dst);
|
|
break;
|
|
+ case GGML_OP_MEAN:
|
|
+ ggml_cuda_op_mean(ctx, dst);
|
|
+ break;
|
|
case GGML_OP_SSM_CONV:
|
|
ggml_cuda_op_ssm_conv(ctx, dst);
|
|
break;
|
|
@@ -3211,6 +3215,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
|
case GGML_OP_POOL_2D:
|
|
case GGML_OP_SUM:
|
|
case GGML_OP_SUM_ROWS:
|
|
+ case GGML_OP_MEAN:
|
|
case GGML_OP_ARGSORT:
|
|
case GGML_OP_ACC:
|
|
return true;
|
|
diff --git a/ggml/src/ggml-cuda/mean.cu b/ggml/src/ggml-cuda/mean.cu
|
|
new file mode 100644
|
|
index 00000000..4b238a39
|
|
--- /dev/null
|
|
+++ b/ggml/src/ggml-cuda/mean.cu
|
|
@@ -0,0 +1,19 @@
|
|
+#include "mean.cuh"
|
|
+
|
|
+void ggml_cuda_op_mean(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
+ const ggml_tensor * src0 = dst->src[0];
|
|
+ const float * src0_d = (const float *) src0->data;
|
|
+ float * dst_d = (float *) dst->data;
|
|
+ cudaStream_t stream = ctx.stream();
|
|
+
|
|
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
|
+ GGML_ASSERT(ggml_is_contiguous(src0));
|
|
+
|
|
+ const int64_t ncols = src0->ne[0];
|
|
+ const int64_t nrows = ggml_nrows(src0);
|
|
+
|
|
+ const dim3 block_dims(WARP_SIZE, 1, 1);
|
|
+ const dim3 block_nums(nrows, 1, 1);
|
|
+ reduce_rows_f32</*norm*/ true><<<block_nums, block_dims, 0, stream>>>(src0_d, dst_d, ncols);
|
|
+}
|
|
diff --git a/ggml/src/ggml-cuda/mean.cuh b/ggml/src/ggml-cuda/mean.cuh
|
|
new file mode 100644
|
|
index 00000000..2b9b1043
|
|
--- /dev/null
|
|
+++ b/ggml/src/ggml-cuda/mean.cuh
|
|
@@ -0,0 +1,3 @@
|
|
+#include "common.cuh"
|
|
+
|
|
+void ggml_cuda_op_mean(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
|
diff --git a/ggml/src/ggml-cuda/sumrows.cu b/ggml/src/ggml-cuda/sumrows.cu
|
|
index 38dbf1b5..2eee08fa 100644
|
|
--- a/ggml/src/ggml-cuda/sumrows.cu
|
|
+++ b/ggml/src/ggml-cuda/sumrows.cu
|
|
@@ -1,25 +1,9 @@
|
|
#include "sumrows.cuh"
|
|
|
|
-static __global__ void k_sum_rows_f32(const float * x, float * dst, const int ncols) {
|
|
- const int row = blockIdx.x;
|
|
- const int col = threadIdx.x;
|
|
-
|
|
- float sum = 0.0f;
|
|
- for (int i = col; i < ncols; i += blockDim.x) {
|
|
- sum += x[row * ncols + i];
|
|
- }
|
|
-
|
|
- sum = warp_reduce_sum(sum);
|
|
-
|
|
- if (col == 0) {
|
|
- dst[row] = sum;
|
|
- }
|
|
-}
|
|
-
|
|
void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
const dim3 block_dims(WARP_SIZE, 1, 1);
|
|
const dim3 block_nums(nrows, 1, 1);
|
|
- k_sum_rows_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
|
|
+ reduce_rows_f32</*norm*/false><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
|
|
}
|
|
|
|
void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
@@ -35,5 +19,8 @@ void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
const int64_t ncols = src0->ne[0];
|
|
const int64_t nrows = ggml_nrows(src0);
|
|
|
|
- sum_rows_f32_cuda(src0_d, dst_d, ncols, nrows, stream);
|
|
+ const dim3 block_dims(WARP_SIZE, 1, 1);
|
|
+ const dim3 block_nums(nrows, 1, 1);
|
|
+
|
|
+ reduce_rows_f32</*norm=*/false><<<block_nums, block_dims, 0, stream>>>(src0_d, dst_d, ncols);
|
|
}
|
|
diff --git a/ggml/src/ggml-cuda/sumrows.cuh b/ggml/src/ggml-cuda/sumrows.cuh
|
|
index 191db1c1..3431c599 100644
|
|
--- a/ggml/src/ggml-cuda/sumrows.cuh
|
|
+++ b/ggml/src/ggml-cuda/sumrows.cuh
|
|
@@ -1,5 +1,4 @@
|
|
#include "common.cuh"
|
|
|
|
void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream);
|
|
-
|
|
void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
|
diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp
|
|
index 543db934..58bdc874 100644
|
|
--- a/tests/test-backend-ops.cpp
|
|
+++ b/tests/test-backend-ops.cpp
|
|
@@ -9,16 +9,14 @@
|
|
// Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case,
|
|
// then go to section 3 and add an instantiation of your struct.
|
|
|
|
-
|
|
// ##############################
|
|
// ## Section 1: General Setup ##
|
|
// ##############################
|
|
|
|
-
|
|
-#include <ggml.h>
|
|
#include <ggml-alloc.h>
|
|
#include <ggml-backend.h>
|
|
#include <ggml-cpp.h>
|
|
+#include <ggml.h>
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
@@ -37,24 +35,26 @@
|
|
#include <vector>
|
|
|
|
static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
|
|
- size_t nels = ggml_nelements(tensor);
|
|
+ size_t nels = ggml_nelements(tensor);
|
|
std::vector<float> data(nels);
|
|
{
|
|
// parallel initialization
|
|
- static const size_t n_threads = std::thread::hardware_concurrency();
|
|
+ static const size_t n_threads = std::thread::hardware_concurrency();
|
|
// static RNG initialization (revisit if n_threads stops being constant)
|
|
static std::vector<std::default_random_engine> generators = []() {
|
|
- std::random_device rd;
|
|
+ std::random_device rd;
|
|
std::vector<std::default_random_engine> vec;
|
|
vec.reserve(n_threads);
|
|
//for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
|
|
- for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
|
|
+ for (size_t i = 0; i < n_threads; i++) {
|
|
+ vec.emplace_back(rd());
|
|
+ }
|
|
return vec;
|
|
}();
|
|
|
|
auto init_thread = [&](size_t ith, size_t start, size_t end) {
|
|
std::uniform_real_distribution<float> distribution(min, max);
|
|
- auto & gen = generators[ith];
|
|
+ auto & gen = generators[ith];
|
|
for (size_t i = start; i < end; i++) {
|
|
data[i] = distribution(gen);
|
|
}
|
|
@@ -63,8 +63,8 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m
|
|
std::vector<std::future<void>> tasks;
|
|
tasks.reserve(n_threads);
|
|
for (size_t i = 0; i < n_threads; i++) {
|
|
- size_t start = i*nels/n_threads;
|
|
- size_t end = (i+1)*nels/n_threads;
|
|
+ size_t start = i * nels / n_threads;
|
|
+ size_t end = (i + 1) * nels / n_threads;
|
|
tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
|
|
}
|
|
for (auto & t : tasks) {
|
|
@@ -77,13 +77,13 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m
|
|
} else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
|
|
GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
|
|
|
|
- // dummy importance matrix
|
|
+ // dummy importance matrix
|
|
std::vector<float> imatrix(tensor->ne[0], 1.0f);
|
|
- const float * im = imatrix.data();
|
|
+ const float * im = imatrix.data();
|
|
if (!ggml_quantize_requires_imatrix(tensor->type)) {
|
|
// when the imatrix is optional, we want to test both quantization with and without imatrix
|
|
// use one of the random numbers to decide
|
|
- if (data[0] > 0.5f*(min + max)) {
|
|
+ if (data[0] > 0.5f * (min + max)) {
|
|
im = nullptr;
|
|
}
|
|
}
|
|
@@ -92,21 +92,21 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m
|
|
{
|
|
// parallel quantization by block
|
|
size_t blck_size = ggml_blck_size(tensor->type);
|
|
- size_t n_blocks = nels / blck_size;
|
|
+ size_t n_blocks = nels / blck_size;
|
|
|
|
auto quantize_thread = [&](size_t start, size_t end) {
|
|
- ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
|
|
- start * blck_size, end - start, blck_size, im);
|
|
+ ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), start * blck_size, end - start, blck_size,
|
|
+ im);
|
|
};
|
|
|
|
- const size_t min_blocks_per_thread = 1;
|
|
- const size_t n_threads = std::min<size_t>(std::thread::hardware_concurrency()/2,
|
|
- std::max<size_t>(1, n_blocks / min_blocks_per_thread));
|
|
+ const size_t min_blocks_per_thread = 1;
|
|
+ const size_t n_threads = std::min<size_t>(std::thread::hardware_concurrency() / 2,
|
|
+ std::max<size_t>(1, n_blocks / min_blocks_per_thread));
|
|
std::vector<std::future<void>> tasks;
|
|
tasks.reserve(n_threads);
|
|
for (size_t i = 0; i < n_threads; i++) {
|
|
- size_t start = i*n_blocks/n_threads;
|
|
- size_t end = (i+1)*n_blocks/n_threads;
|
|
+ size_t start = i * n_blocks / n_threads;
|
|
+ size_t end = (i + 1) * n_blocks / n_threads;
|
|
tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
|
|
}
|
|
for (auto & t : tasks) {
|
|
@@ -119,9 +119,9 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m
|
|
ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
|
|
} else if (tensor->type == GGML_TYPE_I64) {
|
|
// Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful.
|
|
- const size_t nbytes_half = ggml_nbytes(tensor)/2;
|
|
- ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half);
|
|
- ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half);
|
|
+ const size_t nbytes_half = ggml_nbytes(tensor) / 2;
|
|
+ ggml_backend_tensor_set(tensor, data.data(), 0 * nbytes_half, nbytes_half);
|
|
+ ggml_backend_tensor_set(tensor, data.data(), 1 * nbytes_half, nbytes_half);
|
|
} else {
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
@@ -134,31 +134,31 @@ static std::vector<float> tensor_to_float(const ggml_tensor * t) {
|
|
std::vector<uint8_t> buf(ggml_nbytes(t));
|
|
ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
|
|
|
|
- const auto * tt = ggml_get_type_traits(t->type);
|
|
- size_t bs = ggml_blck_size(t->type);
|
|
+ const auto * tt = ggml_get_type_traits(t->type);
|
|
+ size_t bs = ggml_blck_size(t->type);
|
|
std::vector<float> vq(ggml_blck_size(t->type));
|
|
- bool quantized = ggml_is_quantized(t->type);
|
|
+ bool quantized = ggml_is_quantized(t->type);
|
|
|
|
// access elements by index to avoid gaps in views
|
|
for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
|
|
for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
|
|
for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
|
|
for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
|
|
- size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
|
|
+ size_t i = i3 * t->nb[3] + i2 * t->nb[2] + i1 * t->nb[1] + i0 / bs * t->nb[0];
|
|
if (t->type == GGML_TYPE_F16) {
|
|
- tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
|
|
+ tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t *) &buf[i]));
|
|
} else if (t->type == GGML_TYPE_BF16) {
|
|
- tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
|
|
+ tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t *) &buf[i]));
|
|
} else if (t->type == GGML_TYPE_F32) {
|
|
tv.push_back(*(float *) &buf[i]);
|
|
} else if (t->type == GGML_TYPE_I64) {
|
|
- tv.push_back((float)*(int64_t *) &buf[i]);
|
|
+ tv.push_back((float) *(int64_t *) &buf[i]);
|
|
} else if (t->type == GGML_TYPE_I32) {
|
|
- tv.push_back((float)*(int32_t *) &buf[i]);
|
|
+ tv.push_back((float) *(int32_t *) &buf[i]);
|
|
} else if (t->type == GGML_TYPE_I16) {
|
|
- tv.push_back((float)*(int16_t *) &buf[i]);
|
|
+ tv.push_back((float) *(int16_t *) &buf[i]);
|
|
} else if (t->type == GGML_TYPE_I8) {
|
|
- tv.push_back((float)*(int8_t *) &buf[i]);
|
|
+ tv.push_back((float) *(int8_t *) &buf[i]);
|
|
} else if (quantized) {
|
|
tt->to_float(&buf[i], vq.data(), bs);
|
|
tv.insert(tv.end(), vq.begin(), vq.end());
|
|
@@ -195,7 +195,8 @@ static double nmse(const float * a, const float * b, size_t n) {
|
|
// n: number of values to compare.
|
|
// expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where
|
|
// a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail.
|
|
-static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) {
|
|
+static double mean_abs_asymm(const float * a, const float * b, const size_t n,
|
|
+ const std::vector<float> & expected_vals) {
|
|
double sum = 0.0f;
|
|
|
|
size_t nvalid = 0;
|
|
@@ -219,18 +220,16 @@ static double mean_abs_asymm(const float * a, const float * b, const size_t n, c
|
|
nvalid++;
|
|
}
|
|
|
|
- return sum/nvalid;
|
|
+ return sum / nvalid;
|
|
}
|
|
|
|
// utils for printing the variables of the test cases
|
|
|
|
-template<typename T>
|
|
-static std::string var_to_str(const T & x) {
|
|
+template <typename T> static std::string var_to_str(const T & x) {
|
|
return std::to_string(x);
|
|
}
|
|
|
|
-template<typename T, size_t N>
|
|
-static std::string var_to_str(const T (&x)[N]) {
|
|
+template <typename T, size_t N> static std::string var_to_str(const T (&x)[N]) {
|
|
std::string s = "[";
|
|
for (size_t i = 0; i < N; i++) {
|
|
if (i > 0) {
|
|
@@ -242,8 +241,7 @@ static std::string var_to_str(const T (&x)[N]) {
|
|
return s;
|
|
}
|
|
|
|
-template<typename T, size_t N>
|
|
-static std::string var_to_str(const std::array<T, N> & x) {
|
|
+template <typename T, size_t N> static std::string var_to_str(const std::array<T, N> & x) {
|
|
std::string s = "[";
|
|
for (size_t i = 0; i < N; i++) {
|
|
if (i > 0) {
|
|
@@ -265,41 +263,50 @@ static std::string var_to_str(ggml_prec prec) {
|
|
|
|
static std::string var_to_str(ggml_op_pool pool) {
|
|
switch (pool) {
|
|
- case GGML_OP_POOL_AVG: return "avg";
|
|
- case GGML_OP_POOL_MAX: return "max";
|
|
- default: return std::to_string(pool);
|
|
+ case GGML_OP_POOL_AVG:
|
|
+ return "avg";
|
|
+ case GGML_OP_POOL_MAX:
|
|
+ return "max";
|
|
+ default:
|
|
+ return std::to_string(pool);
|
|
}
|
|
}
|
|
|
|
static std::string var_to_str(ggml_scale_mode mode) {
|
|
switch (mode) {
|
|
- case GGML_SCALE_MODE_NEAREST: return "nearest";
|
|
- case GGML_SCALE_MODE_BILINEAR: return "bilinear";
|
|
- default: return std::to_string(mode);
|
|
+ case GGML_SCALE_MODE_NEAREST:
|
|
+ return "nearest";
|
|
+ case GGML_SCALE_MODE_BILINEAR:
|
|
+ return "bilinear";
|
|
+ default:
|
|
+ return std::to_string(mode);
|
|
}
|
|
}
|
|
|
|
#define VAR_TO_STR(x) (#x "=" + var_to_str(x))
|
|
|
|
-#define VARS_TO_STR1(a) VAR_TO_STR(a)
|
|
-#define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
|
|
-#define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
|
|
-#define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
|
|
-#define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
|
|
-#define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
|
|
-#define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
|
|
-#define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
|
|
-#define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
|
|
-#define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
|
|
+#define VARS_TO_STR1(a) VAR_TO_STR(a)
|
|
+#define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
|
|
+#define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
|
|
+#define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
|
|
+#define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
|
|
+#define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
|
|
+#define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
|
|
+#define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
|
|
+#define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
|
|
+#define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
|
|
#define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
|
|
-#define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
|
|
+#define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) \
|
|
+ VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
|
|
|
|
#ifdef GGML_USE_SYCL
|
|
static bool inline _isinf(float f) {
|
|
- return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
|
|
+ return (*(uint32_t *) &f & 0x7fffffff) == 0x7f800000;
|
|
}
|
|
#else
|
|
-static bool inline _isinf(float f) { return std::isinf(f); }
|
|
+static bool inline _isinf(float f) {
|
|
+ return std::isinf(f);
|
|
+}
|
|
#endif
|
|
|
|
// accept FLT_MAX as infinity
|
|
@@ -320,45 +327,29 @@ enum test_mode {
|
|
struct test_case {
|
|
virtual ~test_case() {}
|
|
|
|
- virtual std::string op_desc(ggml_tensor * t) {
|
|
- return ggml_op_desc(t);
|
|
- }
|
|
+ virtual std::string op_desc(ggml_tensor * t) { return ggml_op_desc(t); }
|
|
|
|
- virtual std::string vars() {
|
|
- return "";
|
|
- }
|
|
+ virtual std::string vars() { return ""; }
|
|
|
|
virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
|
|
|
|
- virtual double max_nmse_err() {
|
|
- return 1e-7;
|
|
- }
|
|
+ virtual double max_nmse_err() { return 1e-7; }
|
|
|
|
- virtual double max_maa_err() {
|
|
- return 1e-4;
|
|
- }
|
|
+ virtual double max_maa_err() { return 1e-4; }
|
|
|
|
- virtual float grad_eps() {
|
|
- return 1e-1f;
|
|
- }
|
|
+ virtual float grad_eps() { return 1e-1f; }
|
|
|
|
// If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
|
|
// If true, estimate gradient with 4 points, neglects 5th order derivative and higher.
|
|
- virtual bool grad_precise() {
|
|
- return false;
|
|
- }
|
|
+ virtual bool grad_precise() { return false; }
|
|
|
|
// Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests).
|
|
- virtual int64_t grad_nmax() {
|
|
- return 10000;
|
|
- }
|
|
+ virtual int64_t grad_nmax() { return 10000; }
|
|
|
|
// No effect if empty.
|
|
// If not empty, skip all gradient checks where the numerical result does not match any of the values.
|
|
// Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable.
|
|
- virtual std::vector<float> grad_expect() {
|
|
- return {};
|
|
- }
|
|
+ virtual std::vector<float> grad_expect() { return {}; }
|
|
|
|
virtual void initialize_tensors(ggml_context * ctx) {
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
|
|
@@ -426,7 +417,8 @@ struct test_case {
|
|
return t;
|
|
}
|
|
|
|
- ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
|
|
+ ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2,
|
|
+ int64_t ne3) {
|
|
ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
|
|
add_sentinel(ctx);
|
|
return t;
|
|
@@ -436,7 +428,7 @@ struct test_case {
|
|
mode = MODE_TEST;
|
|
|
|
ggml_init_params params = {
|
|
- /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
|
|
+ /* .mem_size = */ ggml_tensor_overhead() * 128 + ggml_graph_overhead(),
|
|
/* .mem_base = */ NULL,
|
|
/* .no_alloc = */ true,
|
|
};
|
|
@@ -461,7 +453,7 @@ struct test_case {
|
|
|
|
// check if the backends support the ops
|
|
bool supported = true;
|
|
- for (ggml_backend_t backend : {backend1, backend2}) {
|
|
+ for (ggml_backend_t backend : { backend1, backend2 }) {
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
|
if (!ggml_backend_supports_op(backend, t)) {
|
|
printf("not supported [%s] ", ggml_backend_name(backend));
|
|
@@ -501,23 +493,18 @@ struct test_case {
|
|
|
|
// compare
|
|
struct callback_userdata {
|
|
- bool ok;
|
|
- double max_err;
|
|
+ bool ok;
|
|
+ double max_err;
|
|
ggml_backend_t backend1;
|
|
ggml_backend_t backend2;
|
|
};
|
|
|
|
- callback_userdata ud {
|
|
- true,
|
|
- max_nmse_err(),
|
|
- backend1,
|
|
- backend2
|
|
- };
|
|
+ callback_userdata ud{ true, max_nmse_err(), backend1, backend2 };
|
|
|
|
auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
|
|
- callback_userdata * ud = (callback_userdata *) user_data;
|
|
- const char * bn1 = ggml_backend_name(ud->backend1);
|
|
- const char * bn2 = ggml_backend_name(ud->backend2);
|
|
+ callback_userdata * ud = (callback_userdata *) user_data;
|
|
+ const char * bn1 = ggml_backend_name(ud->backend1);
|
|
+ const char * bn2 = ggml_backend_name(ud->backend2);
|
|
|
|
if (t1->op == GGML_OP_NONE) {
|
|
// sentinels must be unchanged
|
|
@@ -599,11 +586,11 @@ struct test_case {
|
|
static const size_t graph_nodes = 8192;
|
|
|
|
ggml_init_params params = {
|
|
- /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
|
|
+ /* .mem_size = */ ggml_tensor_overhead() * 128 + ggml_graph_overhead_custom(graph_nodes, false),
|
|
/* .mem_base = */ NULL,
|
|
/* .no_alloc = */ true,
|
|
};
|
|
- ggml_context_ptr ctx(ggml_init(params)); // smart ptr
|
|
+ ggml_context_ptr ctx(ggml_init(params)); // smart ptr
|
|
GGML_ASSERT(ctx);
|
|
|
|
ggml_tensor * out = build_graph(ctx.get());
|
|
@@ -624,14 +611,14 @@ struct test_case {
|
|
|
|
// align while also leaving some margin for variations in parameters
|
|
int align = 8;
|
|
- int last = (len + align - 1) / align * align;
|
|
+ int last = (len + align - 1) / align * align;
|
|
if (last - len < 5) {
|
|
last += align;
|
|
}
|
|
printf("%*s", last - len, "");
|
|
|
|
// allocate
|
|
- ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
|
|
+ ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
|
|
|
|
if (buf == NULL) {
|
|
printf("failed to allocate tensors\n");
|
|
@@ -648,26 +635,27 @@ struct test_case {
|
|
// warmup run
|
|
ggml_status status = ggml_backend_graph_compute(backend, gf);
|
|
if (status != GGML_STATUS_SUCCESS) {
|
|
- fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
|
|
+ fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__,
|
|
+ ggml_status_to_string(status));
|
|
return false;
|
|
}
|
|
|
|
// determine number of runs
|
|
- int n_runs;
|
|
+ int n_runs;
|
|
bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU;
|
|
if (op_flops(out) > 0) {
|
|
// based on flops
|
|
- const uint64_t GFLOP = 1000 * 1000 * 1000;
|
|
- const uint64_t target_flops_cpu = 8ULL * GFLOP;
|
|
+ const uint64_t GFLOP = 1000 * 1000 * 1000;
|
|
+ const uint64_t target_flops_cpu = 8ULL * GFLOP;
|
|
const uint64_t target_flops_gpu = 100ULL * GFLOP;
|
|
- uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
|
|
+ uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
|
|
n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
|
|
} else {
|
|
// based on memory size
|
|
- const size_t GB = 1ULL << 30;
|
|
- const size_t target_size_cpu = 8 * GB;
|
|
+ const size_t GB = 1ULL << 30;
|
|
+ const size_t target_size_cpu = 8 * GB;
|
|
const size_t target_size_gpu = 32 * GB;
|
|
- size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
|
|
+ size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
|
|
n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
|
|
}
|
|
|
|
@@ -677,8 +665,8 @@ struct test_case {
|
|
}
|
|
|
|
// calculate memory
|
|
- size_t mem = n_runs * op_size(out);
|
|
- auto tensor_op_size = [](ggml_tensor * t) {
|
|
+ size_t mem = n_runs * op_size(out);
|
|
+ auto tensor_op_size = [](ggml_tensor * t) {
|
|
size_t size = ggml_nbytes(t);
|
|
// add source tensors
|
|
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
|
@@ -697,13 +685,14 @@ struct test_case {
|
|
|
|
// run
|
|
int64_t total_time_us = 0;
|
|
- int64_t total_mem = 0;
|
|
- int total_runs = 0;
|
|
+ int64_t total_mem = 0;
|
|
+ int total_runs = 0;
|
|
do {
|
|
- int64_t start_time = ggml_time_us();
|
|
- ggml_status status = ggml_backend_graph_compute(backend, gf);
|
|
+ int64_t start_time = ggml_time_us();
|
|
+ ggml_status status = ggml_backend_graph_compute(backend, gf);
|
|
if (status != GGML_STATUS_SUCCESS) {
|
|
- fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
|
|
+ fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__,
|
|
+ ggml_status_to_string(status));
|
|
return false;
|
|
}
|
|
int64_t end_time = ggml_time_us();
|
|
@@ -711,15 +700,13 @@ struct test_case {
|
|
total_time_us += end_time - start_time;
|
|
total_mem += mem;
|
|
total_runs += n_runs;
|
|
- } while (total_time_us < 1000*1000); // run for at least 1 second
|
|
+ } while (total_time_us < 1000 * 1000); // run for at least 1 second
|
|
|
|
- printf(" %8d runs - %8.2f us/run - ",
|
|
- total_runs,
|
|
- (double)total_time_us / total_runs);
|
|
+ printf(" %8d runs - %8.2f us/run - ", total_runs, (double) total_time_us / total_runs);
|
|
|
|
if (op_flops(out) > 0) {
|
|
double flops_per_sec = (op_flops(out) * total_runs) / (total_time_us / 1e6);
|
|
- auto format_flops = [](double flops) -> std::string {
|
|
+ auto format_flops = [](double flops) -> std::string {
|
|
char buf[256];
|
|
if (flops >= 1e12) {
|
|
snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
|
|
@@ -732,14 +719,12 @@ struct test_case {
|
|
}
|
|
return buf;
|
|
};
|
|
- printf("%s/run - \033[1;34m%sS\033[0m",
|
|
- format_flops(op_flops(out)).c_str(),
|
|
- format_flops(flops_per_sec).c_str());
|
|
+ printf("%s/run - \033[1;34m%sS\033[0m", format_flops(op_flops(out)).c_str(),
|
|
+ format_flops(flops_per_sec).c_str());
|
|
|
|
} else {
|
|
- printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m",
|
|
- op_size(out) / 1024,
|
|
- total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0);
|
|
+ printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m", op_size(out) / 1024,
|
|
+ total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0);
|
|
}
|
|
printf("\n");
|
|
|
|
@@ -747,15 +732,16 @@ struct test_case {
|
|
}
|
|
|
|
bool eval_grad(ggml_backend_t backend, const char * op_name) {
|
|
- mode = MODE_GRAD;
|
|
+ mode = MODE_GRAD;
|
|
const std::vector<float> expect = grad_expect();
|
|
|
|
ggml_init_params params = {
|
|
- /* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
|
|
+ /* .mem_size = */ ggml_tensor_overhead() * 128 +
|
|
+ 2 * ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
|
|
/* .mem_base = */ NULL,
|
|
/* .no_alloc = */ true,
|
|
};
|
|
- ggml_context_ptr ctx(ggml_init(params)); // smart ptr
|
|
+ ggml_context_ptr ctx(ggml_init(params)); // smart ptr
|
|
GGML_ASSERT(ctx);
|
|
|
|
gf = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
|
|
@@ -777,7 +763,7 @@ struct test_case {
|
|
}
|
|
|
|
// check if the backend supports the ops
|
|
- bool supported = true;
|
|
+ bool supported = true;
|
|
bool any_params = false;
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
|
|
if (!ggml_backend_supports_op(backend, t)) {
|
|
@@ -814,7 +800,6 @@ struct test_case {
|
|
return true;
|
|
}
|
|
|
|
-
|
|
if (!ggml_is_scalar(out)) {
|
|
out = ggml_sum(ctx.get(), out);
|
|
ggml_set_name(out, "sum_of_out");
|
|
@@ -826,7 +811,8 @@ struct test_case {
|
|
ggml_build_backward_expand(ctx.get(), gb, nullptr);
|
|
if (expect.size() != 1 || expect[0] != 0.0f) {
|
|
GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
|
|
- for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
|
|
+ for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL;
|
|
+ t = ggml_get_next_tensor(ctx.get(), t)) {
|
|
GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
|
|
}
|
|
}
|
|
@@ -849,44 +835,47 @@ struct test_case {
|
|
}
|
|
|
|
// allocate
|
|
- ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
|
|
+ ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
|
|
if (buf == NULL) {
|
|
printf("failed to allocate tensors [%s] ", ggml_backend_name(backend));
|
|
return false;
|
|
}
|
|
|
|
- initialize_tensors(ctx.get()); // Randomizes all tensors (including gradients).
|
|
- ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
|
|
+ initialize_tensors(ctx.get()); // Randomizes all tensors (including gradients).
|
|
+ ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
|
|
|
|
ggml_status status = ggml_backend_graph_compute(backend, gf);
|
|
if (status != GGML_STATUS_SUCCESS) {
|
|
- fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
|
|
+ fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__,
|
|
+ ggml_status_to_string(status));
|
|
return false;
|
|
}
|
|
status = ggml_backend_graph_compute(backend, gb);
|
|
if (status != GGML_STATUS_SUCCESS) {
|
|
- fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
|
|
+ fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__,
|
|
+ ggml_status_to_string(status));
|
|
return false;
|
|
}
|
|
|
|
bool ok = true;
|
|
- for (struct ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != nullptr; t = ggml_get_next_tensor(ctx.get(), t)) {
|
|
+ for (struct ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != nullptr;
|
|
+ t = ggml_get_next_tensor(ctx.get(), t)) {
|
|
if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
|
|
continue;
|
|
}
|
|
|
|
- const char * bn = ggml_backend_name(backend);
|
|
+ const char * bn = ggml_backend_name(backend);
|
|
const int64_t ne = ggml_nelements(t);
|
|
|
|
- std::vector<float> ga;
|
|
+ std::vector<float> ga;
|
|
struct ggml_tensor * grad = ggml_graph_get_grad(gb, t);
|
|
if (grad) {
|
|
ga = tensor_to_float(grad);
|
|
} else {
|
|
- ga.resize(ne); // default value is 0.0f
|
|
+ ga.resize(ne); // default value is 0.0f
|
|
}
|
|
|
|
- for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
|
|
+ for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
|
|
// check for nans
|
|
if (!std::isfinite(ga[i])) {
|
|
printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", ggml_op_desc(t), i, bn, ga[i]);
|
|
@@ -898,58 +887,63 @@ struct test_case {
|
|
break;
|
|
}
|
|
|
|
- std::vector<float> gn(ne); // gradient numeric
|
|
+ std::vector<float> gn(ne); // gradient numeric
|
|
GGML_ASSERT(ga.size() == gn.size());
|
|
|
|
- std::vector<float> x0 = tensor_to_float(t); // original t data
|
|
+ std::vector<float> x0 = tensor_to_float(t); // original t data
|
|
GGML_ASSERT(ggml_is_scalar(out));
|
|
GGML_ASSERT(out->type == GGML_TYPE_F32);
|
|
|
|
const float eps = grad_eps();
|
|
for (int64_t i = 0; i < ne; ++i) {
|
|
- const float xiu = x0[i] + 1.0f*eps; // x, index i, up
|
|
- const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half
|
|
- const float xidh = x0[i] - 0.5f*eps; // x, index i, down half
|
|
- const float xid = x0[i] - 1.0f*eps; // x, index i, down
|
|
+ const float xiu = x0[i] + 1.0f * eps; // x, index i, up
|
|
+ const float xiuh = x0[i] + 0.5f * eps; // x, index i, up half
|
|
+ const float xidh = x0[i] - 0.5f * eps; // x, index i, down half
|
|
+ const float xid = x0[i] - 1.0f * eps; // x, index i, down
|
|
|
|
- float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
|
|
+ float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
|
|
|
|
- ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
|
|
+ ggml_backend_tensor_set(t, &xiu, i * sizeof(float), sizeof(float));
|
|
status = ggml_backend_graph_compute(backend, gf);
|
|
if (status != GGML_STATUS_SUCCESS) {
|
|
- fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
|
|
+ fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__,
|
|
+ ggml_status_to_string(status));
|
|
return false;
|
|
}
|
|
ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
|
|
|
|
- ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
|
|
+ ggml_backend_tensor_set(t, &xid, i * sizeof(float), sizeof(float));
|
|
status = ggml_backend_graph_compute(backend, gf);
|
|
if (status != GGML_STATUS_SUCCESS) {
|
|
- fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
|
|
+ fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__,
|
|
+ ggml_status_to_string(status));
|
|
return false;
|
|
}
|
|
ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
|
|
|
|
if (grad_precise()) {
|
|
- ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
|
|
+ ggml_backend_tensor_set(t, &xiuh, i * sizeof(float), sizeof(float));
|
|
status = ggml_backend_graph_compute(backend, gf);
|
|
if (status != GGML_STATUS_SUCCESS) {
|
|
- fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
|
|
+ fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__,
|
|
+ ggml_status_to_string(status));
|
|
return false;
|
|
}
|
|
ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
|
|
|
|
- ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
|
|
+ ggml_backend_tensor_set(t, &xidh, i * sizeof(float), sizeof(float));
|
|
status = ggml_backend_graph_compute(backend, gf);
|
|
if (status != GGML_STATUS_SUCCESS) {
|
|
- fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
|
|
+ fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__,
|
|
+ ggml_status_to_string(status));
|
|
return false;
|
|
}
|
|
ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
|
|
|
|
- gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
|
|
+ gn[i] =
|
|
+ (8.0 * (double) fuh + (double) fd - (8.0 * (double) fdh + (double) fu)) / (6.0 * (double) eps);
|
|
} else {
|
|
- gn[i] = (fu - fd) / (2.0f*eps);
|
|
+ gn[i] = (fu - fd) / (2.0f * eps);
|
|
}
|
|
|
|
ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t));
|
|
@@ -980,82 +974,77 @@ struct test_case {
|
|
}
|
|
};
|
|
|
|
-
|
|
// ###################################
|
|
// ## Section 2: GGML Op Defintions ##
|
|
// ###################################
|
|
|
|
-
|
|
// The following is an example showing the bare minimum for creating a test for a GGML op.
|
|
|
|
// GGML_OP_EXAMPLE
|
|
struct test_example : public test_case {
|
|
// Always define these 2 or variants thereof:
|
|
- const ggml_type type; // The type of the input tensors.
|
|
- const std::array<int64_t, 4> ne; // The shape of the input tensors.
|
|
+ const ggml_type type; // The type of the input tensors.
|
|
+ const std::array<int64_t, 4> ne; // The shape of the input tensors.
|
|
+
|
|
// For some ops it's necessary to define multiple types or shapes for the inputs.
|
|
// Or they may need additional parameters.
|
|
|
|
// Put all parameters needed to fully define the test into one of the VARS_TO_STR macros.
|
|
// In most cases these are just the properties of the struct that you defined above.
|
|
// This is needed for info prints.
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR2(type, ne);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR2(type, ne); }
|
|
|
|
// Define a constructor for the struct.
|
|
// In most cases it will be sufficient to have the same arguments as the struct has properties
|
|
// and just use initializer lists.
|
|
- test_example(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
|
|
- : type(type), ne(ne) {}
|
|
+ test_example(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 10, 5, 4, 3 }) : type(type), ne(ne) {}
|
|
|
|
// Define how a simple GGML compute graph can be constructed for the new GGML op.
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
// Step 1: create input tensors that don't depend on any other tensors:
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
- ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
|
|
+ ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
|
|
|
|
ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
ggml_set_name(b, "b");
|
|
|
|
// Step 2: use the op that you want to test in the GGML compute graph.
|
|
- ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
|
|
+ ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
|
|
ggml_set_name(out, "out");
|
|
|
|
// Step 3: return the output tensor.
|
|
return out;
|
|
}
|
|
+
|
|
// In order to also check the gradients for your op, add calls like ggml_set_param(a)
|
|
// immediately after you create the tensors.
|
|
// This is optional and only makes sense if a backward pass has actually been implemented for the new op.
|
|
};
|
|
|
|
-
|
|
// GGML_OP_UNARY
|
|
struct test_unary : public test_case {
|
|
- const ggml_unary_op op;
|
|
- const ggml_type type;
|
|
+ const ggml_unary_op op;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne_a;
|
|
- int v; // view (1 : non-contiguous a)
|
|
+ int v; // view (1 : non-contiguous a)
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR3(type, ne_a, v);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR3(type, ne_a, v); }
|
|
|
|
- test_unary(ggml_unary_op op,
|
|
- ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
|
|
- int v = 0)
|
|
- : op(op), type(type), ne_a(ne_a), v(v) {}
|
|
+ test_unary(ggml_unary_op op, ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne_a = { 128, 2, 2, 2 },
|
|
+ int v = 0) :
|
|
+ op(op),
|
|
+ type(type),
|
|
+ ne_a(ne_a),
|
|
+ v(v) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG ||
|
|
- op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU;
|
|
+ op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU;
|
|
|
|
ggml_tensor * a;
|
|
if (v & 1) {
|
|
- auto ne = ne_a; ne[0] *= 3;
|
|
+ auto ne = ne_a;
|
|
+ ne[0] *= 3;
|
|
a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
if (grad_supported) {
|
|
ggml_set_param(a);
|
|
@@ -1085,40 +1074,40 @@ struct test_unary : public test_case {
|
|
}
|
|
}
|
|
|
|
- float grad_eps() override {
|
|
- return 15.0f;
|
|
- }
|
|
+ float grad_eps() override { return 15.0f; }
|
|
|
|
std::vector<float> grad_expect() override {
|
|
if (op == GGML_UNARY_OP_ABS) {
|
|
- return {-1.0f, 1.0f};
|
|
+ return { -1.0f, 1.0f };
|
|
}
|
|
if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) {
|
|
- return {0.0f};
|
|
+ return { 0.0f };
|
|
}
|
|
if (op == GGML_UNARY_OP_RELU) {
|
|
- return {0.0f, 1.0f};
|
|
+ return { 0.0f, 1.0f };
|
|
}
|
|
return {};
|
|
}
|
|
-
|
|
};
|
|
|
|
// GGML_OP_GET_ROWS
|
|
struct test_get_rows : public test_case {
|
|
const ggml_type type;
|
|
- const int n; // cols
|
|
- const int m; // rows
|
|
- const int r; // rows to get
|
|
- const int b; // batch size
|
|
- const bool v; // view (non-contiguous src1)
|
|
-
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR6(type, n, m, r, b, v);
|
|
- }
|
|
-
|
|
- test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
|
|
- : type(type), n(n), m(m), r(r), b(b), v(v) {}
|
|
+ const int n; // cols
|
|
+ const int m; // rows
|
|
+ const int r; // rows to get
|
|
+ const int b; // batch size
|
|
+ const bool v; // view (non-contiguous src1)
|
|
+
|
|
+ std::string vars() override { return VARS_TO_STR6(type, n, m, r, b, v); }
|
|
+
|
|
+ test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false) :
|
|
+ type(type),
|
|
+ n(n),
|
|
+ m(m),
|
|
+ r(r),
|
|
+ b(b),
|
|
+ v(v) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b);
|
|
@@ -1127,7 +1116,7 @@ struct test_get_rows : public test_case {
|
|
ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
|
|
ggml_set_name(rows, "rows");
|
|
if (v) {
|
|
- rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
|
|
+ rows = ggml_view_2d(ctx, rows, r / 2, b, rows->nb[1], 0);
|
|
ggml_set_name(rows, "view_of_rows");
|
|
}
|
|
|
|
@@ -1146,10 +1135,12 @@ struct test_get_rows : public test_case {
|
|
void initialize_tensors(ggml_context * ctx) override {
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
|
if (t->type == GGML_TYPE_I32) {
|
|
- if (ggml_is_view_op(t->op)) { continue; }
|
|
+ if (ggml_is_view_op(t->op)) {
|
|
+ continue;
|
|
+ }
|
|
// rows
|
|
- std::vector<int> data(r*b);
|
|
- for (int i = 0; i < r*b; i++) {
|
|
+ std::vector<int> data(r * b);
|
|
+ for (int i = 0; i < r * b; i++) {
|
|
data[i] = rand() % m;
|
|
}
|
|
ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
|
|
@@ -1163,18 +1154,21 @@ struct test_get_rows : public test_case {
|
|
// GGML_OP_GET_ROWS_BACK
|
|
struct test_get_rows_back : public test_case {
|
|
const ggml_type type;
|
|
- const int n; // cols
|
|
- const int m; // rows
|
|
- const int r; // rows to get
|
|
- const int b; // batch size
|
|
- const bool v; // view (non-contiguous src1)
|
|
-
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR6(type, n, m, r, b, v);
|
|
- }
|
|
-
|
|
- test_get_rows_back(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
|
|
- : type(type), n(n), m(m), r(r), b(b), v(v) {}
|
|
+ const int n; // cols
|
|
+ const int m; // rows
|
|
+ const int r; // rows to get
|
|
+ const int b; // batch size
|
|
+ const bool v; // view (non-contiguous src1)
|
|
+
|
|
+ std::string vars() override { return VARS_TO_STR6(type, n, m, r, b, v); }
|
|
+
|
|
+ test_get_rows_back(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false) :
|
|
+ type(type),
|
|
+ n(n),
|
|
+ m(m),
|
|
+ r(r),
|
|
+ b(b),
|
|
+ v(v) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * in_forward = ggml_new_tensor_3d(ctx, type, n, m, b);
|
|
@@ -1183,7 +1177,7 @@ struct test_get_rows_back : public test_case {
|
|
ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
|
|
ggml_set_name(rows, "rows");
|
|
if (v) {
|
|
- rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
|
|
+ rows = ggml_view_2d(ctx, rows, r / 2, b, rows->nb[1], 0);
|
|
ggml_set_name(rows, "view_of_rows");
|
|
}
|
|
|
|
@@ -1199,10 +1193,12 @@ struct test_get_rows_back : public test_case {
|
|
void initialize_tensors(ggml_context * ctx) override {
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
|
if (t->type == GGML_TYPE_I32) {
|
|
- if (ggml_is_view_op(t->op)) { continue; }
|
|
+ if (ggml_is_view_op(t->op)) {
|
|
+ continue;
|
|
+ }
|
|
// rows
|
|
- std::vector<int> data(r*b);
|
|
- for (int i = 0; i < r*b; i++) {
|
|
+ std::vector<int> data(r * b);
|
|
+ for (int i = 0; i < r * b; i++) {
|
|
data[i] = rand() % m;
|
|
}
|
|
ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
|
|
@@ -1215,16 +1211,12 @@ struct test_get_rows_back : public test_case {
|
|
|
|
// GGML_OP_ARGMAX
|
|
struct test_argmax : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR2(type, ne);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR2(type, ne); }
|
|
|
|
- test_argmax(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {10, 100, 1, 1})
|
|
- : type(type), ne(ne) {}
|
|
+ test_argmax(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 10, 100, 1, 1 }) : type(type), ne(ne) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
@@ -1237,7 +1229,7 @@ struct test_argmax : public test_case {
|
|
}
|
|
|
|
void initialize_tensors(ggml_context * ctx) override {
|
|
- std::random_device rd;
|
|
+ std::random_device rd;
|
|
std::default_random_engine rng(rd());
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
|
if (t->type == GGML_TYPE_F32) {
|
|
@@ -1256,23 +1248,19 @@ struct test_argmax : public test_case {
|
|
}
|
|
}
|
|
|
|
- double max_nmse_err() override {
|
|
- return 0.0;
|
|
- }
|
|
+ double max_nmse_err() override { return 0.0; }
|
|
};
|
|
|
|
// GGML_OP_COUNT_EQUAL
|
|
struct test_count_equal : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR2(type, ne);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR2(type, ne); }
|
|
|
|
- test_count_equal(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {4, 500, 1, 1})
|
|
- : type(type), ne(ne) {}
|
|
+ test_count_equal(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 4, 500, 1, 1 }) :
|
|
+ type(type),
|
|
+ ne(ne) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
@@ -1293,32 +1281,28 @@ struct test_count_equal : public test_case {
|
|
return out;
|
|
}
|
|
|
|
- double max_nmse_err() override {
|
|
- return 0.0;
|
|
- }
|
|
+ double max_nmse_err() override { return 0.0; }
|
|
};
|
|
|
|
// GGML_OP_REPEAT
|
|
struct test_repeat : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne;
|
|
- const std::array<int, 4> nr;
|
|
+ const std::array<int, 4> nr;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR3(type, ne, nr);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR3(type, ne, nr); }
|
|
|
|
- size_t op_size(ggml_tensor * t) override {
|
|
- return ggml_nbytes(t) * 2;
|
|
- }
|
|
+ size_t op_size(ggml_tensor * t) override { return ggml_nbytes(t) * 2; }
|
|
|
|
- test_repeat(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {10, 5, 4, 3},
|
|
- std::array<int, 4> nr = {2, 2, 2, 2})
|
|
- : type(type), ne(ne), nr(nr) {}
|
|
+ test_repeat(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 10, 5, 4, 3 },
|
|
+ std::array<int, 4> nr = { 2, 2, 2, 2 }) :
|
|
+ type(type),
|
|
+ ne(ne),
|
|
+ nr(nr) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
- ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
|
|
+ ggml_tensor * target =
|
|
+ ggml_new_tensor_4d(ctx, type, ne[0] * nr[0], ne[1] * nr[1], ne[2] * nr[2], ne[3] * nr[3]);
|
|
ggml_set_name(target, "target");
|
|
|
|
ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
@@ -1334,27 +1318,24 @@ struct test_repeat : public test_case {
|
|
|
|
// GGML_OP_REPEAT_BACK
|
|
struct test_repeat_back : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne;
|
|
- const std::array<int, 4> nr;
|
|
- const bool v; // whether src is a noncontiguous view
|
|
+ const std::array<int, 4> nr;
|
|
+ const bool v; // whether src is a noncontiguous view
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR4(type, ne, nr, v);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR4(type, ne, nr, v); }
|
|
|
|
- size_t op_size(ggml_tensor * t) override {
|
|
- return ggml_nbytes(t) * 2;
|
|
- }
|
|
+ size_t op_size(ggml_tensor * t) override { return ggml_nbytes(t) * 2; }
|
|
|
|
- test_repeat_back(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {8, 6, 4, 2},
|
|
- std::array<int, 4> nr = {2, 2, 2, 2},
|
|
- bool v = false)
|
|
- : type(type), ne(ne), nr(nr), v(v) {}
|
|
+ test_repeat_back(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 8, 6, 4, 2 },
|
|
+ std::array<int, 4> nr = { 2, 2, 2, 2 }, bool v = false) :
|
|
+ type(type),
|
|
+ ne(ne),
|
|
+ nr(nr),
|
|
+ v(v) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
- ggml_tensor * src = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
|
|
+ ggml_tensor * src = ggml_new_tensor_4d(ctx, type, ne[0] * nr[0], ne[1] * nr[1], ne[2] * nr[2], ne[3] * nr[3]);
|
|
ggml_set_name(src, "src");
|
|
|
|
if (v) {
|
|
@@ -1387,22 +1368,25 @@ struct test_repeat_back : public test_case {
|
|
|
|
// GGML_OP_DUP
|
|
struct test_dup : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne;
|
|
const std::array<int64_t, 4> permute;
|
|
- bool _use_permute;
|
|
+ bool _use_permute;
|
|
|
|
std::string vars() override {
|
|
std::string v = VARS_TO_STR2(type, ne);
|
|
- if (_use_permute) v += "," + VAR_TO_STR(permute);
|
|
+ if (_use_permute) {
|
|
+ v += "," + VAR_TO_STR(permute);
|
|
+ }
|
|
return v;
|
|
}
|
|
|
|
- test_dup(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {10, 10, 20, 1},
|
|
- std::array<int64_t, 4> permute = {0, 0, 0, 0})
|
|
- : type(type), ne(ne), permute(permute),
|
|
- _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
|
|
+ test_dup(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 10, 10, 20, 1 },
|
|
+ std::array<int64_t, 4> permute = { 0, 0, 0, 0 }) :
|
|
+ type(type),
|
|
+ ne(ne),
|
|
+ permute(permute),
|
|
+ _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
@@ -1423,22 +1407,21 @@ struct test_dup : public test_case {
|
|
|
|
// GGML_OP_SET
|
|
struct test_set : public test_case {
|
|
- const ggml_type type_src;
|
|
- const ggml_type type_dst;
|
|
+ const ggml_type type_src;
|
|
+ const ggml_type type_dst;
|
|
const std::array<int64_t, 4> ne;
|
|
- const int dim;
|
|
+ const int dim;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR4(type_src, type_dst, ne, dim);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR4(type_src, type_dst, ne, dim); }
|
|
|
|
- size_t op_size(ggml_tensor * t) override {
|
|
- return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
|
|
- }
|
|
+ size_t op_size(ggml_tensor * t) override { return ggml_nbytes(t) + ggml_nbytes(t->src[0]); }
|
|
|
|
test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
|
|
- : type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
|
|
+ std::array<int64_t, 4> ne = { 6, 5, 4, 3 }, int dim = 1) :
|
|
+ type_src(type_src),
|
|
+ type_dst(type_dst),
|
|
+ ne(ne),
|
|
+ dim(dim) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
|
|
@@ -1449,17 +1432,17 @@ struct test_set : public test_case {
|
|
for (int i = 0; i < dim; ++i) {
|
|
ne_dst[i] *= 2;
|
|
}
|
|
- ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
|
|
+ ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
|
|
ggml_set_param(dst);
|
|
ggml_set_name(dst, "dst");
|
|
|
|
size_t offset = 0;
|
|
for (int i = 0; i < dim; ++i) {
|
|
- offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
|
|
+ offset += ((ne_dst[i] - ne[i]) / 2) * dst->nb[i];
|
|
}
|
|
ggml_tensor * out = ggml_set(ctx, dst, src,
|
|
- // The backward pass requires setting a contiguous region:
|
|
- src->nb[1], src->nb[2], src->nb[3], offset);
|
|
+ // The backward pass requires setting a contiguous region:
|
|
+ src->nb[1], src->nb[2], src->nb[3], offset);
|
|
ggml_set_name(out, "out");
|
|
|
|
return out;
|
|
@@ -1468,33 +1451,30 @@ struct test_set : public test_case {
|
|
|
|
// GGML_OP_CPY
|
|
struct test_cpy : public test_case {
|
|
- const ggml_type type_src;
|
|
- const ggml_type type_dst;
|
|
+ const ggml_type type_src;
|
|
+ const ggml_type type_dst;
|
|
const std::array<int64_t, 4> ne;
|
|
const std::array<int64_t, 4> permute_src;
|
|
const std::array<int64_t, 4> permute_dst;
|
|
- bool _src_use_permute;
|
|
- bool _dst_use_permute;
|
|
+ bool _src_use_permute;
|
|
+ bool _dst_use_permute;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR5(type_src, type_dst, ne, permute_src, permute_dst);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR5(type_src, type_dst, ne, permute_src, permute_dst); }
|
|
|
|
- double max_nmse_err() override {
|
|
- return 1e-6;
|
|
- }
|
|
+ double max_nmse_err() override { return 1e-6; }
|
|
|
|
- size_t op_size(ggml_tensor * t) override {
|
|
- return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
|
|
- }
|
|
+ size_t op_size(ggml_tensor * t) override { return ggml_nbytes(t) + ggml_nbytes(t->src[0]); }
|
|
|
|
test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {10, 10, 10, 1},
|
|
- std::array<int64_t, 4> permute_src = {0, 0, 0, 0},
|
|
- std::array<int64_t, 4> permute_dst = {0, 0, 0, 0})
|
|
- : type_src(type_src), type_dst(type_dst), ne(ne), permute_src(permute_src), permute_dst(permute_dst),
|
|
- _src_use_permute(permute_src[0] + permute_src[1] + permute_src[2] + permute_src[3] > 0),
|
|
- _dst_use_permute(permute_dst[0] + permute_dst[1] + permute_dst[2] + permute_dst[3] > 0) {}
|
|
+ std::array<int64_t, 4> ne = { 10, 10, 10, 1 }, std::array<int64_t, 4> permute_src = { 0, 0, 0, 0 },
|
|
+ std::array<int64_t, 4> permute_dst = { 0, 0, 0, 0 }) :
|
|
+ type_src(type_src),
|
|
+ type_dst(type_dst),
|
|
+ ne(ne),
|
|
+ permute_src(permute_src),
|
|
+ permute_dst(permute_dst),
|
|
+ _src_use_permute(permute_src[0] + permute_src[1] + permute_src[2] + permute_src[3] > 0),
|
|
+ _dst_use_permute(permute_dst[0] + permute_dst[1] + permute_dst[2] + permute_dst[3] > 0) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
|
|
@@ -1523,16 +1503,12 @@ struct test_cpy : public test_case {
|
|
|
|
// GGML_OP_CONT
|
|
struct test_cont : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR2(type, ne);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR2(type, ne); }
|
|
|
|
- test_cont(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {10, 10, 10, 1})
|
|
- : type(type), ne(ne) {}
|
|
+ test_cont(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 10, 10, 10, 1 }) : type(type), ne(ne) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
@@ -1555,26 +1531,24 @@ struct test_cont : public test_case {
|
|
// GGML_OP_DIV
|
|
struct test_bin_bcast : public test_case {
|
|
using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
|
|
- op_t op;
|
|
- const ggml_type type;
|
|
+ op_t op;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne;
|
|
- const std::array<int, 4> nr;
|
|
+ const std::array<int, 4> nr;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR3(type, ne, nr);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR3(type, ne, nr); }
|
|
|
|
- size_t op_size(ggml_tensor * t) override {
|
|
- return ggml_nbytes(t) * 3;
|
|
- }
|
|
+ size_t op_size(ggml_tensor * t) override { return ggml_nbytes(t) * 3; }
|
|
|
|
- test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {10, 10, 1, 1},
|
|
- std::array<int, 4> nr = {1, 2, 1, 1})
|
|
- : op(op), type(type), ne(ne), nr(nr) {}
|
|
+ test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 10, 10, 1, 1 },
|
|
+ std::array<int, 4> nr = { 1, 2, 1, 1 }) :
|
|
+ op(op),
|
|
+ type(type),
|
|
+ ne(ne),
|
|
+ nr(nr) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
- ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
|
|
+ ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0] * nr[0], ne[1] * nr[1], ne[2] * nr[2], ne[3] * nr[3]);
|
|
ggml_set_name(a, "a");
|
|
|
|
ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
@@ -1604,31 +1578,21 @@ struct test_bin_bcast : public test_case {
|
|
}
|
|
}
|
|
|
|
- float grad_eps() override {
|
|
- return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1);
|
|
- }
|
|
+ float grad_eps() override { return 0.1f * (op == ggml_mul ? ne[0] * ne[1] * ne[2] * ne[3] : 1); }
|
|
|
|
- bool grad_precise() override {
|
|
- return op == ggml_div;
|
|
- }
|
|
+ bool grad_precise() override { return op == ggml_div; }
|
|
|
|
- double max_maa_err() override {
|
|
- return op == ggml_add ? 1e-4 : 1e-3;
|
|
- }
|
|
+ double max_maa_err() override { return op == ggml_add ? 1e-4 : 1e-3; }
|
|
};
|
|
|
|
// GGML_OP_ADD1
|
|
struct test_add1 : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR2(type, ne);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR2(type, ne); }
|
|
|
|
- test_add1(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
|
|
- : type(type), ne(ne) {}
|
|
+ test_add1(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 10, 5, 4, 3 }) : type(type), ne(ne) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
@@ -1645,25 +1609,21 @@ struct test_add1 : public test_case {
|
|
return out;
|
|
}
|
|
|
|
- float grad_eps() override {
|
|
- return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
|
|
- }
|
|
+ float grad_eps() override { return 0.1f * ne[0] * ne[1] * ne[2] * ne[3]; }
|
|
};
|
|
|
|
// GGML_OP_SCALE
|
|
struct test_scale : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne;
|
|
- float scale;
|
|
+ float scale;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR3(type, ne, scale);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR3(type, ne, scale); }
|
|
|
|
- test_scale(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {10, 10, 10, 10},
|
|
- float scale = 2.0f)
|
|
- : type(type), ne(ne), scale(scale) {}
|
|
+ test_scale(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 10, 10, 10, 10 }, float scale = 2.0f) :
|
|
+ type(type),
|
|
+ ne(ne),
|
|
+ scale(scale) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
@@ -1679,18 +1639,16 @@ struct test_scale : public test_case {
|
|
|
|
// GGML_OP_SILU_BACK
|
|
struct test_silu_back : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne;
|
|
- float eps;
|
|
+ float eps;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR3(type, ne, eps);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR3(type, ne, eps); }
|
|
|
|
- test_silu_back(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {64, 5, 4, 3},
|
|
- float eps = 1e-6f)
|
|
- : type(type), ne(ne), eps(eps) {}
|
|
+ test_silu_back(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 64, 5, 4, 3 }, float eps = 1e-6f) :
|
|
+ type(type),
|
|
+ ne(ne),
|
|
+ eps(eps) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
@@ -1705,34 +1663,32 @@ struct test_silu_back : public test_case {
|
|
return out;
|
|
}
|
|
|
|
- bool grad_precise() override {
|
|
- return true;
|
|
- }
|
|
+ bool grad_precise() override { return true; }
|
|
};
|
|
|
|
// GGML_OP_NORM
|
|
struct test_norm : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne;
|
|
- const bool v; // whether a is a non-contiguous view
|
|
- const float eps;
|
|
+ const bool v; // whether a is a non-contiguous view
|
|
+ const float eps;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR4(type, ne, v, eps);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR4(type, ne, v, eps); }
|
|
|
|
- test_norm(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {64, 5, 4, 3},
|
|
- bool v = false,
|
|
- float eps = 1e-6f)
|
|
- : type(type), ne(ne), v(v), eps(eps) {}
|
|
+ test_norm(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 64, 5, 4, 3 }, bool v = false,
|
|
+ float eps = 1e-6f) :
|
|
+ type(type),
|
|
+ ne(ne),
|
|
+ v(v),
|
|
+ eps(eps) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
ggml_set_name(a, "a");
|
|
|
|
if (v) {
|
|
- a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
|
|
+ a = ggml_view_4d(ctx, a, a->ne[0] / 2, a->ne[1] / 2, a->ne[2] / 2, a->ne[3] / 2, a->nb[1], a->nb[2],
|
|
+ a->nb[3], 0);
|
|
ggml_set_name(a, "view of a");
|
|
}
|
|
|
|
@@ -1745,20 +1701,19 @@ struct test_norm : public test_case {
|
|
|
|
// GGML_OP_RMS_NORM
|
|
struct test_rms_norm : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne;
|
|
- const bool v; // whether a is a non-contiguous view
|
|
- const float eps;
|
|
+ const bool v; // whether a is a non-contiguous view
|
|
+ const float eps;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR4(type, ne, v, eps);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR4(type, ne, v, eps); }
|
|
|
|
- test_rms_norm(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {64, 5, 4, 3},
|
|
- bool v = false,
|
|
- float eps = 1e-6f)
|
|
- : type(type), ne(ne), v(v), eps(eps) {}
|
|
+ test_rms_norm(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 64, 5, 4, 3 }, bool v = false,
|
|
+ float eps = 1e-6f) :
|
|
+ type(type),
|
|
+ ne(ne),
|
|
+ v(v),
|
|
+ eps(eps) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
@@ -1766,7 +1721,8 @@ struct test_rms_norm : public test_case {
|
|
ggml_set_name(a, "a");
|
|
|
|
if (v) {
|
|
- a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
|
|
+ a = ggml_view_4d(ctx, a, a->ne[0] / 2, a->ne[1] / 2, a->ne[2] / 2, a->ne[3] / 2, a->nb[1], a->nb[2],
|
|
+ a->nb[3], 0);
|
|
ggml_set_name(a, "view of a");
|
|
}
|
|
|
|
@@ -1782,29 +1738,23 @@ struct test_rms_norm : public test_case {
|
|
}
|
|
}
|
|
|
|
- float grad_eps() override {
|
|
- return 1.0f;
|
|
- }
|
|
+ float grad_eps() override { return 1.0f; }
|
|
|
|
- bool grad_precise() override {
|
|
- return true;
|
|
- }
|
|
+ bool grad_precise() override { return true; }
|
|
};
|
|
|
|
// GGML_OP_RMS_NORM_BACK
|
|
struct test_rms_norm_back : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne;
|
|
- const float eps;
|
|
+ const float eps;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR3(type, ne, eps);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR3(type, ne, eps); }
|
|
|
|
- test_rms_norm_back(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {64, 5, 4, 3},
|
|
- float eps = 1e-6f)
|
|
- : type(type), ne(ne), eps(eps) {}
|
|
+ test_rms_norm_back(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 64, 5, 4, 3 }, float eps = 1e-6f) :
|
|
+ type(type),
|
|
+ ne(ne),
|
|
+ eps(eps) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
@@ -1828,18 +1778,17 @@ struct test_rms_norm_back : public test_case {
|
|
|
|
// GGML_OP_SSM_CONV
|
|
struct test_ssm_conv : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne_a;
|
|
const std::array<int64_t, 4> ne_b;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR3(type, ne_a, ne_b);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR3(type, ne_a, ne_b); }
|
|
|
|
- test_ssm_conv(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
|
|
- std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
|
|
- : type(type), ne_a(ne_a), ne_b(ne_b) {}
|
|
+ test_ssm_conv(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne_a = { 10, 10, 10, 1 },
|
|
+ std::array<int64_t, 4> ne_b = { 3, 3, 1, 1 }) :
|
|
+ type(type),
|
|
+ ne_a(ne_a),
|
|
+ ne_b(ne_b) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
|
|
@@ -1858,21 +1807,27 @@ struct test_ssm_scan : public test_case {
|
|
const int64_t n_seq_tokens;
|
|
const int64_t n_seqs;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR5(type, d_state, d_inner, n_seq_tokens, n_seqs);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR5(type, d_state, d_inner, n_seq_tokens, n_seqs); }
|
|
|
|
- test_ssm_scan(ggml_type type = GGML_TYPE_F32,
|
|
- int64_t d_state = 32, int64_t d_inner = 32, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
|
|
- : type(type), d_state(d_state), d_inner(d_inner), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
|
|
+ test_ssm_scan(ggml_type type = GGML_TYPE_F32, int64_t d_state = 32, int64_t d_inner = 32, int64_t n_seq_tokens = 32,
|
|
+ int64_t n_seqs = 32) :
|
|
+ type(type),
|
|
+ d_state(d_state),
|
|
+ d_inner(d_inner),
|
|
+ n_seq_tokens(n_seq_tokens),
|
|
+ n_seqs(n_seqs) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
- ggml_tensor * s = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner, n_seqs, 1 }.data());
|
|
- ggml_tensor * x = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data());
|
|
- ggml_tensor * dt = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data());
|
|
- ggml_tensor * A = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner, 1 , 1 }.data());
|
|
- ggml_tensor * B = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data());
|
|
- ggml_tensor * C = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data());
|
|
+ ggml_tensor * s = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner, n_seqs, 1 }.data());
|
|
+ ggml_tensor * x =
|
|
+ ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data());
|
|
+ ggml_tensor * dt =
|
|
+ ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data());
|
|
+ ggml_tensor * A = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner, 1, 1 }.data());
|
|
+ ggml_tensor * B =
|
|
+ ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data());
|
|
+ ggml_tensor * C =
|
|
+ ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data());
|
|
ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C);
|
|
return out;
|
|
}
|
|
@@ -1887,22 +1842,26 @@ struct test_rwkv_wkv6 : public test_case {
|
|
const int64_t n_seq_tokens;
|
|
const int64_t n_seqs;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs); }
|
|
|
|
- test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
|
|
- int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
|
|
- : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
|
|
+ test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32, int64_t head_count = 32, int64_t head_size = 64,
|
|
+ int64_t n_seq_tokens = 32, int64_t n_seqs = 32) :
|
|
+ type(type),
|
|
+ head_count(head_count),
|
|
+ head_size(head_size),
|
|
+ n_seq_tokens(n_seq_tokens),
|
|
+ n_seqs(n_seqs) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
const int64_t n_tokens = n_seq_tokens * n_seqs;
|
|
- ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
- ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
- ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
- ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
|
|
- ggml_tensor * td = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
- ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
|
|
+ ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
+ ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
+ ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
+ ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
|
|
+ ggml_tensor * td =
|
|
+ ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
+ ggml_tensor * s =
|
|
+ ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
|
|
ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
|
|
return out;
|
|
}
|
|
@@ -1917,21 +1876,24 @@ struct test_gla : public test_case {
|
|
const int64_t n_seq_tokens;
|
|
const int64_t n_seqs;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs); }
|
|
|
|
- test_gla(ggml_type type = GGML_TYPE_F32,
|
|
- int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
|
|
- : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
|
|
+ test_gla(ggml_type type = GGML_TYPE_F32, int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32,
|
|
+ int64_t n_seqs = 32) :
|
|
+ type(type),
|
|
+ head_count(head_count),
|
|
+ head_size(head_size),
|
|
+ n_seq_tokens(n_seq_tokens),
|
|
+ n_seqs(n_seqs) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
const int64_t n_tokens = n_seq_tokens * n_seqs;
|
|
- ggml_tensor * q = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
- ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
- ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
- ggml_tensor * g = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
- ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
|
|
+ ggml_tensor * q = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
+ ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
+ ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
+ ggml_tensor * g = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
+ ggml_tensor * s =
|
|
+ ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
|
|
ggml_tensor * out = ggml_gated_linear_attn(ctx, k, v, q, g, s, pow(head_size, -0.5));
|
|
return out;
|
|
}
|
|
@@ -1946,26 +1908,29 @@ struct test_rwkv_wkv7 : public test_case {
|
|
const int64_t n_seq_tokens;
|
|
const int64_t n_seqs;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs); }
|
|
|
|
- test_rwkv_wkv7(ggml_type type = GGML_TYPE_F32,
|
|
- int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
|
|
- : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
|
|
+ test_rwkv_wkv7(ggml_type type = GGML_TYPE_F32, int64_t head_count = 32, int64_t head_size = 64,
|
|
+ int64_t n_seq_tokens = 32, int64_t n_seqs = 32) :
|
|
+ type(type),
|
|
+ head_count(head_count),
|
|
+ head_size(head_size),
|
|
+ n_seq_tokens(n_seq_tokens),
|
|
+ n_seqs(n_seqs) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
const int64_t n_tokens = n_seq_tokens * n_seqs;
|
|
- ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
- ggml_tensor * w = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
- ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
- ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
- ggml_tensor * a = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
- ggml_tensor * b = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
+ ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
+ ggml_tensor * w = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
+ ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
+ ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
+ ggml_tensor * a = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
+ ggml_tensor * b = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
// Outputs may become NaN with long seqlen without these normalization
|
|
- a = ggml_l2_norm(ctx, a, 1e-7F);
|
|
- b = ggml_l2_norm(ctx, b, 1e-7F);
|
|
- ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
|
|
+ a = ggml_l2_norm(ctx, a, 1e-7F);
|
|
+ b = ggml_l2_norm(ctx, b, 1e-7F);
|
|
+ ggml_tensor * s =
|
|
+ ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
|
|
ggml_tensor * out = ggml_rwkv_wkv7(ctx, r, w, k, v, a, b, s);
|
|
return out;
|
|
}
|
|
@@ -1973,40 +1938,39 @@ struct test_rwkv_wkv7 : public test_case {
|
|
|
|
// GGML_OP_MUL_MAT
|
|
struct test_mul_mat : public test_case {
|
|
- const ggml_type type_a;
|
|
- const ggml_type type_b;
|
|
- const int64_t m;
|
|
- const int64_t n;
|
|
- const int64_t k;
|
|
- const std::array<int64_t, 2> bs; // dims 3 and 4
|
|
- const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
|
|
- const std::array<int64_t, 4> per; // permutation of dimensions
|
|
- const bool v; // whether a and b are non-contiguous views
|
|
+ const ggml_type type_a;
|
|
+ const ggml_type type_b;
|
|
+ const int64_t m;
|
|
+ const int64_t n;
|
|
+ const int64_t k;
|
|
+ const std::array<int64_t, 2> bs; // dims 3 and 4
|
|
+ const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
|
|
+ const std::array<int64_t, 4> per; // permutation of dimensions
|
|
+ const bool v; // whether a and b are non-contiguous views
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR9(type_a, type_b, m, n, k, bs, nr, per, v);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR9(type_a, type_b, m, n, k, bs, nr, per, v); }
|
|
|
|
- double max_nmse_err() override {
|
|
- return 5e-4;
|
|
- }
|
|
+ double max_nmse_err() override { return 5e-4; }
|
|
|
|
- int64_t grad_nmax() override {
|
|
- return 20000;
|
|
- }
|
|
+ int64_t grad_nmax() override { return 20000; }
|
|
|
|
uint64_t op_flops(ggml_tensor * t) override {
|
|
GGML_UNUSED(t);
|
|
return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
|
|
}
|
|
|
|
- test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
|
|
- int64_t m = 32, int64_t n = 32, int64_t k = 32,
|
|
- std::array<int64_t, 2> bs = {10, 10},
|
|
- std::array<int64_t, 2> nr = {2, 2},
|
|
- std::array<int64_t, 4> per = {0, 1, 2, 3},
|
|
- bool v = false)
|
|
- : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per), v(v) {}
|
|
+ test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32, int64_t m = 32, int64_t n = 32,
|
|
+ int64_t k = 32, std::array<int64_t, 2> bs = { 10, 10 }, std::array<int64_t, 2> nr = { 2, 2 },
|
|
+ std::array<int64_t, 4> per = { 0, 1, 2, 3 }, bool v = false) :
|
|
+ type_a(type_a),
|
|
+ type_b(type_b),
|
|
+ m(m),
|
|
+ n(n),
|
|
+ k(k),
|
|
+ bs(bs),
|
|
+ nr(nr),
|
|
+ per(per),
|
|
+ v(v) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
// C^T = A * B^T: (k, m) * (k, n) => (m, n)
|
|
@@ -2016,13 +1980,13 @@ struct test_mul_mat : public test_case {
|
|
const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
|
|
if (npermuted > 0) {
|
|
GGML_ASSERT(npermuted == 2);
|
|
- GGML_ASSERT(!v); // not handled
|
|
+ GGML_ASSERT(!v); // not handled
|
|
GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
|
|
GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
|
|
|
|
// Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
|
|
- const int64_t ne_a[4] = {k, m, bs[0], bs[1]};
|
|
- const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
|
|
+ const int64_t ne_a[4] = { k, m, bs[0], bs[1] };
|
|
+ const int64_t ne_b[4] = { k, n, bs[0] * nr[0], bs[1] * nr[1] };
|
|
|
|
a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
|
|
b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
|
|
@@ -2041,8 +2005,8 @@ struct test_mul_mat : public test_case {
|
|
ggml_set_name(b, "b_permuted");
|
|
} else {
|
|
if (v) {
|
|
- a = ggml_new_tensor_4d(ctx, type_a, k*2, m, bs[0], bs[1]);
|
|
- b = ggml_new_tensor_4d(ctx, type_b, k*2, n, bs[0]*nr[0], bs[1]*nr[1]);
|
|
+ a = ggml_new_tensor_4d(ctx, type_a, k * 2, m, bs[0], bs[1]);
|
|
+ b = ggml_new_tensor_4d(ctx, type_b, k * 2, n, bs[0] * nr[0], bs[1] * nr[1]);
|
|
|
|
if (!ggml_is_quantized(type_a)) {
|
|
if (bs[1] == 1 && nr[1] == 1) {
|
|
@@ -2051,11 +2015,11 @@ struct test_mul_mat : public test_case {
|
|
ggml_set_param(b);
|
|
}
|
|
|
|
- a = ggml_view_4d(ctx, a, k, m, bs[0], bs[1], a->nb[1], a->nb[2], a->nb[3], 0);
|
|
- b = ggml_view_4d(ctx, b, k, n, bs[0]*nr[0], bs[1]*nr[1], b->nb[1], b->nb[2], b->nb[3], 0);
|
|
+ a = ggml_view_4d(ctx, a, k, m, bs[0], bs[1], a->nb[1], a->nb[2], a->nb[3], 0);
|
|
+ b = ggml_view_4d(ctx, b, k, n, bs[0] * nr[0], bs[1] * nr[1], b->nb[1], b->nb[2], b->nb[3], 0);
|
|
} else {
|
|
- a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
|
|
- b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
|
|
+ a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
|
|
+ b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0] * nr[0], bs[1] * nr[1]);
|
|
|
|
if (!ggml_is_quantized(type_a)) {
|
|
if (bs[1] == 1 && nr[1] == 1) {
|
|
@@ -2079,33 +2043,34 @@ struct test_mul_mat : public test_case {
|
|
struct test_mul_mat_id : public test_case {
|
|
const ggml_type type_a;
|
|
const ggml_type type_b;
|
|
- const int n_mats;
|
|
- const int n_used;
|
|
- const bool b; // broadcast b matrix
|
|
- const int64_t m;
|
|
- const int64_t n;
|
|
- const int64_t k;
|
|
+ const int n_mats;
|
|
+ const int n_used;
|
|
+ const bool b; // broadcast b matrix
|
|
+ const int64_t m;
|
|
+ const int64_t n;
|
|
+ const int64_t k;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k); }
|
|
|
|
- double max_nmse_err() override {
|
|
- return 5e-4;
|
|
- }
|
|
+ double max_nmse_err() override { return 5e-4; }
|
|
|
|
uint64_t op_flops(ggml_tensor * t) override {
|
|
GGML_UNUSED(t);
|
|
return 2 * m * k * n * n_used;
|
|
}
|
|
|
|
- test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
|
|
- int n_mats = 8, int n_used = 2, bool b = false,
|
|
- int64_t m = 32, int64_t n = 32, int64_t k = 32)
|
|
- : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
|
|
- m(m), n(n), k(k) {
|
|
- GGML_ASSERT(n_used <= n_mats);
|
|
- }
|
|
+ test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32, int n_mats = 8, int n_used = 2,
|
|
+ bool b = false, int64_t m = 32, int64_t n = 32, int64_t k = 32) :
|
|
+ type_a(type_a),
|
|
+ type_b(type_b),
|
|
+ n_mats(n_mats),
|
|
+ n_used(n_used),
|
|
+ b(b),
|
|
+ m(m),
|
|
+ n(n),
|
|
+ k(k) {
|
|
+ GGML_ASSERT(n_used <= n_mats);
|
|
+ }
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
// C^T = A * B^T: (k, m) * (k, n) => (m, n)
|
|
@@ -2129,11 +2094,13 @@ struct test_mul_mat_id : public test_case {
|
|
}
|
|
|
|
void initialize_tensors(ggml_context * ctx) override {
|
|
- std::random_device rd;
|
|
+ std::random_device rd;
|
|
std::default_random_engine rng(rd());
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
|
if (t->type == GGML_TYPE_I32) {
|
|
- if (ggml_is_view_op(t->op)) { continue; }
|
|
+ if (ggml_is_view_op(t->op)) {
|
|
+ continue;
|
|
+ }
|
|
// ids
|
|
for (int64_t r = 0; r < ggml_nrows(t); r++) {
|
|
std::vector<int32_t> data(t->ne[0]);
|
|
@@ -2152,29 +2119,30 @@ struct test_mul_mat_id : public test_case {
|
|
|
|
// GGML_OP_OUT_PROD
|
|
struct test_out_prod : public test_case {
|
|
- const ggml_type type_a;
|
|
- const ggml_type type_b;
|
|
- const int64_t m;
|
|
- const int64_t n;
|
|
- const int64_t k;
|
|
- const std::array<int64_t, 2> bs; // dims 3 and 4
|
|
- const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
|
|
- const bool trans_b;
|
|
+ const ggml_type type_a;
|
|
+ const ggml_type type_b;
|
|
+ const int64_t m;
|
|
+ const int64_t n;
|
|
+ const int64_t k;
|
|
+ const std::array<int64_t, 2> bs; // dims 3 and 4
|
|
+ const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
|
|
+ const bool trans_b;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, trans_b);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, trans_b); }
|
|
|
|
- double max_nmse_err() override {
|
|
- return 5e-4;
|
|
- }
|
|
+ double max_nmse_err() override { return 5e-4; }
|
|
|
|
- test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
|
|
- int64_t m = 32, int64_t n = 32, int64_t k = 32,
|
|
- std::array<int64_t, 2> bs = {10, 10},
|
|
- std::array<int64_t, 2> nr = {2, 2},
|
|
- bool trans_b = false)
|
|
- : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), trans_b(trans_b) {}
|
|
+ test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32, int64_t m = 32, int64_t n = 32,
|
|
+ int64_t k = 32, std::array<int64_t, 2> bs = { 10, 10 }, std::array<int64_t, 2> nr = { 2, 2 },
|
|
+ bool trans_b = false) :
|
|
+ type_a(type_a),
|
|
+ type_b(type_b),
|
|
+ m(m),
|
|
+ n(n),
|
|
+ k(k),
|
|
+ bs(bs),
|
|
+ nr(nr),
|
|
+ trans_b(trans_b) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]);
|
|
@@ -2182,10 +2150,10 @@ struct test_out_prod : public test_case {
|
|
|
|
ggml_tensor * b;
|
|
if (trans_b) {
|
|
- b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
|
|
+ b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0] * nr[0], bs[1] * nr[1]);
|
|
b = ggml_transpose(ctx, b);
|
|
} else {
|
|
- b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0]*nr[0], bs[1]*nr[1]);
|
|
+ b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0] * nr[0], bs[1] * nr[1]);
|
|
}
|
|
ggml_set_name(b, "b");
|
|
|
|
@@ -2198,16 +2166,12 @@ struct test_out_prod : public test_case {
|
|
|
|
// GGML_OP_SQR
|
|
struct test_sqr : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR2(type, ne);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR2(type, ne); }
|
|
|
|
- test_sqr(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
|
|
- : type(type), ne(ne) {}
|
|
+ test_sqr(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 10, 5, 4, 3 }) : type(type), ne(ne) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
@@ -2221,22 +2185,18 @@ struct test_sqr : public test_case {
|
|
}
|
|
|
|
float grad_eps() override {
|
|
- return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum.
|
|
+ return 0.1f * 0.25f * ne[0] * ne[1] * ne[2] * ne[3]; // 10% of expected value of sum.
|
|
}
|
|
};
|
|
|
|
// GGML_OP_SQRT
|
|
struct test_sqrt : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR2(type, ne);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR2(type, ne); }
|
|
|
|
- test_sqrt(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {10, 3, 3, 2})
|
|
- : type(type), ne(ne) {}
|
|
+ test_sqrt(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 10, 3, 3, 2 }) : type(type), ne(ne) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
@@ -2256,27 +2216,19 @@ struct test_sqrt : public test_case {
|
|
}
|
|
}
|
|
|
|
- float grad_eps() override {
|
|
- return 20.0f;
|
|
- }
|
|
+ float grad_eps() override { return 20.0f; }
|
|
|
|
- bool grad_precise() override {
|
|
- return true;
|
|
- }
|
|
+ bool grad_precise() override { return true; }
|
|
};
|
|
|
|
// GGML_OP_LOG
|
|
struct test_log : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR2(type, ne);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR2(type, ne); }
|
|
|
|
- test_log(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
|
|
- : type(type), ne(ne) {}
|
|
+ test_log(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 10, 5, 4, 3 }) : type(type), ne(ne) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
@@ -2296,23 +2248,17 @@ struct test_log : public test_case {
|
|
}
|
|
}
|
|
|
|
- bool grad_precise() override {
|
|
- return true;
|
|
- }
|
|
+ bool grad_precise() override { return true; }
|
|
};
|
|
|
|
// GGML_OP_SIN
|
|
struct test_sin : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR2(type, ne);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR2(type, ne); }
|
|
|
|
- test_sin(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {10, 2, 2, 2})
|
|
- : type(type), ne(ne) {}
|
|
+ test_sin(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 10, 2, 2, 2 }) : type(type), ne(ne) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
@@ -2327,35 +2273,25 @@ struct test_sin : public test_case {
|
|
|
|
void initialize_tensors(ggml_context * ctx) override {
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
|
- init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
|
|
+ init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
|
|
}
|
|
}
|
|
|
|
- double max_maa_err() override {
|
|
- return 1e-3;
|
|
- }
|
|
+ double max_maa_err() override { return 1e-3; }
|
|
|
|
- float grad_eps() override {
|
|
- return 0.2f;
|
|
- }
|
|
+ float grad_eps() override { return 0.2f; }
|
|
|
|
- bool grad_precise() override {
|
|
- return true;
|
|
- }
|
|
+ bool grad_precise() override { return true; }
|
|
};
|
|
|
|
// GGML_OP_COS
|
|
struct test_cos : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR2(type, ne);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR2(type, ne); }
|
|
|
|
- test_cos(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {10, 2, 2, 2})
|
|
- : type(type), ne(ne) {}
|
|
+ test_cos(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 10, 2, 2, 2 }) : type(type), ne(ne) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
@@ -2370,38 +2306,32 @@ struct test_cos : public test_case {
|
|
|
|
void initialize_tensors(ggml_context * ctx) override {
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
|
- init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
|
|
+ init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
|
|
}
|
|
}
|
|
|
|
- double max_maa_err() override {
|
|
- return 1e-3;
|
|
- }
|
|
+ double max_maa_err() override { return 1e-3; }
|
|
|
|
- float grad_eps() override {
|
|
- return 0.2f;
|
|
- }
|
|
+ float grad_eps() override { return 0.2f; }
|
|
|
|
- bool grad_precise() override {
|
|
- return true;
|
|
- }
|
|
+ bool grad_precise() override { return true; }
|
|
};
|
|
|
|
// GGML_OP_CLAMP
|
|
struct test_clamp : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne;
|
|
- float min;
|
|
- float max;
|
|
+ float min;
|
|
+ float max;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR4(type, ne, min, max);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR4(type, ne, min, max); }
|
|
|
|
- test_clamp(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {10, 5, 4, 3},
|
|
- float min = -0.5f, float max = 0.5f)
|
|
- : type(type), ne(ne), min(min), max(max) {}
|
|
+ test_clamp(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 10, 5, 4, 3 }, float min = -0.5f,
|
|
+ float max = 0.5f) :
|
|
+ type(type),
|
|
+ ne(ne),
|
|
+ min(min),
|
|
+ max(max) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
@@ -2413,29 +2343,23 @@ struct test_clamp : public test_case {
|
|
return out;
|
|
}
|
|
|
|
- float grad_eps() override {
|
|
- return 1e-2f;
|
|
- }
|
|
+ float grad_eps() override { return 1e-2f; }
|
|
|
|
- std::vector<float> grad_expect() override {
|
|
- return {0.0f, 1.0f};
|
|
- }
|
|
+ std::vector<float> grad_expect() override { return { 0.0f, 1.0f }; }
|
|
};
|
|
|
|
// GGML_OP_DIAG_MASK_INF
|
|
struct test_diag_mask_inf : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne;
|
|
- const int n_past;
|
|
+ const int n_past;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR3(type, ne, n_past);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR3(type, ne, n_past); }
|
|
|
|
- test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {10, 10, 3, 2},
|
|
- int n_past = 5)
|
|
- : type(type), ne(ne), n_past(n_past) {}
|
|
+ test_diag_mask_inf(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 10, 10, 3, 2 }, int n_past = 5) :
|
|
+ type(type),
|
|
+ ne(ne),
|
|
+ n_past(n_past) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
@@ -2451,30 +2375,27 @@ struct test_diag_mask_inf : public test_case {
|
|
|
|
// GGML_OP_SOFT_MAX
|
|
struct test_soft_max : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne;
|
|
- const bool mask;
|
|
- const ggml_type m_prec;
|
|
- const float scale;
|
|
- const float max_bias;
|
|
+ const bool mask;
|
|
+ const ggml_type m_prec;
|
|
+ const float scale;
|
|
+ const float max_bias;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR6(type, ne, mask, m_prec, scale, max_bias);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR6(type, ne, mask, m_prec, scale, max_bias); }
|
|
|
|
// the 1024 test with bias occasionally fails:
|
|
// SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
|
|
- virtual double max_nmse_err() override {
|
|
- return 1e-6;
|
|
- }
|
|
+ virtual double max_nmse_err() override { return 1e-6; }
|
|
|
|
- test_soft_max(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {10, 5, 4, 3},
|
|
- bool mask = false,
|
|
- ggml_type m_prec = GGML_TYPE_F32,
|
|
- float scale = 1.0f,
|
|
- float max_bias = 0.0f)
|
|
- : type(type), ne(ne), mask(mask), m_prec(m_prec), scale(scale), max_bias(max_bias) {}
|
|
+ test_soft_max(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 10, 5, 4, 3 }, bool mask = false,
|
|
+ ggml_type m_prec = GGML_TYPE_F32, float scale = 1.0f, float max_bias = 0.0f) :
|
|
+ type(type),
|
|
+ ne(ne),
|
|
+ mask(mask),
|
|
+ m_prec(m_prec),
|
|
+ scale(scale),
|
|
+ max_bias(max_bias) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
@@ -2493,27 +2414,24 @@ struct test_soft_max : public test_case {
|
|
return out;
|
|
}
|
|
|
|
- bool grad_precise() override {
|
|
- return true;
|
|
- }
|
|
+ bool grad_precise() override { return true; }
|
|
};
|
|
|
|
// GGML_OP_SOFT_MAX_BACK
|
|
struct test_soft_max_back : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne;
|
|
- const float scale;
|
|
- const float max_bias;
|
|
+ const float scale;
|
|
+ const float max_bias;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR4(type, ne, scale, max_bias);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR4(type, ne, scale, max_bias); }
|
|
|
|
- test_soft_max_back(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {10, 5, 4, 3},
|
|
- float scale = 1.0f,
|
|
- float max_bias = 0.0f)
|
|
- : type(type), ne(ne), scale(scale), max_bias(max_bias) {}
|
|
+ test_soft_max_back(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 10, 5, 4, 3 }, float scale = 1.0f,
|
|
+ float max_bias = 0.0f) :
|
|
+ type(type),
|
|
+ ne(ne),
|
|
+ scale(scale),
|
|
+ max_bias(max_bias) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
@@ -2531,33 +2449,45 @@ struct test_soft_max_back : public test_case {
|
|
|
|
// GGML_OP_ROPE + GGML_OP_ROPE_BACK
|
|
struct test_rope : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne_a;
|
|
- int n_dims;
|
|
- int mode;
|
|
- int n_ctx; // used to generate positions
|
|
- float fs; // freq_scale
|
|
- float ef; // ext_factor
|
|
- float af; // attn_factor
|
|
- bool ff;
|
|
- int v; // view (1 : non-contiguous a)
|
|
- bool forward;
|
|
+ int n_dims;
|
|
+ int mode;
|
|
+ int n_ctx; // used to generate positions
|
|
+ float fs; // freq_scale
|
|
+ float ef; // ext_factor
|
|
+ float af; // attn_factor
|
|
+ bool ff;
|
|
+ int v; // view (1 : non-contiguous a)
|
|
+ bool forward;
|
|
|
|
std::string vars() override {
|
|
// forward can be inferred from the op, does not need to be printed
|
|
return VARS_TO_STR10(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v);
|
|
}
|
|
|
|
- test_rope(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne_a = {10, 5, 3, 1},
|
|
- int n_dims = 10, int mode = 0, int n_ctx = 512, float fs = 1.0f,
|
|
- float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0, bool forward = true)
|
|
- : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v), forward(forward) {}
|
|
+ test_rope(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne_a = { 10, 5, 3, 1 }, int n_dims = 10,
|
|
+ int mode = 0, int n_ctx = 512, float fs = 1.0f, float ef = 0.0f, float af = 0.0f, bool ff = false,
|
|
+ int v = 0, bool forward = true) :
|
|
+ type(type),
|
|
+ ne_a(ne_a),
|
|
+ n_dims(n_dims),
|
|
+ mode(mode),
|
|
+ n_ctx(n_ctx),
|
|
+ fs(fs),
|
|
+ ef(ef),
|
|
+ af(af),
|
|
+ ff(ff),
|
|
+ v(v),
|
|
+ forward(forward) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a;
|
|
if (v & 1) {
|
|
- auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
|
|
+ auto ne = ne_a;
|
|
+ ne[0] *= 2;
|
|
+ ne[1] *= 4;
|
|
+ ne[2] *= 3;
|
|
a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
if (forward) {
|
|
ggml_set_param(a);
|
|
@@ -2574,7 +2504,7 @@ struct test_rope : public test_case {
|
|
ggml_set_name(a, "a");
|
|
}
|
|
|
|
- const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
|
|
+ const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
|
|
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
|
|
|
|
ggml_tensor * pos;
|
|
@@ -2587,32 +2517,37 @@ struct test_rope : public test_case {
|
|
|
|
ggml_tensor * freq = nullptr;
|
|
if (ff) {
|
|
- freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2);
|
|
+ freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims / 2);
|
|
ggml_set_name(freq, "freq");
|
|
}
|
|
|
|
ggml_tensor * out;
|
|
if (is_mrope) {
|
|
if (is_vision) {
|
|
- GGML_ASSERT(n_dims/4 > 0);
|
|
- int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
|
|
+ GGML_ASSERT(n_dims / 4 > 0);
|
|
+ int rope_sections[4] = { n_dims / 4, n_dims / 4, 0,
|
|
+ 0 }; // Vision-RoPE only use first two dimension for image (x, y) coordinate
|
|
if (forward) {
|
|
- out = ggml_rope_multi (ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
|
|
+ out = ggml_rope_multi(ctx, a, pos, freq, n_dims / 2, rope_sections, mode, 0, 10000.0f, fs, ef, af,
|
|
+ 1.0f, 1.0f);
|
|
} else {
|
|
- out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
|
|
+ out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims / 2, rope_sections, mode, 0, 10000.0f, fs, ef,
|
|
+ af, 1.0f, 1.0f);
|
|
}
|
|
} else {
|
|
- GGML_ASSERT(n_dims/3 > 0);
|
|
- int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
|
|
+ GGML_ASSERT(n_dims / 3 > 0);
|
|
+ int rope_sections[4] = { n_dims / 3, n_dims / 3, n_dims / 3, 0 };
|
|
if (forward) {
|
|
- out = ggml_rope_multi (ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
|
|
+ out = ggml_rope_multi(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f,
|
|
+ 1.0f);
|
|
} else {
|
|
- out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
|
|
+ out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af,
|
|
+ 1.0f, 1.0f);
|
|
}
|
|
}
|
|
} else {
|
|
if (forward) {
|
|
- out = ggml_rope_ext (ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
|
|
+ out = ggml_rope_ext(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
|
|
} else {
|
|
out = ggml_rope_ext_back(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
|
|
}
|
|
@@ -2628,14 +2563,14 @@ struct test_rope : public test_case {
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
|
if (t->type == GGML_TYPE_I32) {
|
|
// pos
|
|
- const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
|
|
+ const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
|
|
std::vector<int> data(num_pos_ids);
|
|
for (int i = 0; i < num_pos_ids; i++) {
|
|
data[i] = rand() % n_ctx;
|
|
}
|
|
ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
|
|
} else {
|
|
- if (t->ne[0] == n_dims/2) {
|
|
+ if (t->ne[0] == n_dims / 2) {
|
|
// frequency factors in the range [0.9f, 1.1f]
|
|
init_tensor_uniform(t, 0.9f, 1.1f);
|
|
} else {
|
|
@@ -2645,41 +2580,40 @@ struct test_rope : public test_case {
|
|
}
|
|
}
|
|
|
|
- double max_maa_err() override {
|
|
- return 1e-3;
|
|
- }
|
|
+ double max_maa_err() override { return 1e-3; }
|
|
|
|
- bool grad_precise() override {
|
|
- return true;
|
|
- }
|
|
+ bool grad_precise() override { return true; }
|
|
};
|
|
|
|
// GGML_OP_POOL2D
|
|
struct test_pool2d : public test_case {
|
|
- enum ggml_op_pool pool_type;
|
|
- const ggml_type type_input;
|
|
+ enum ggml_op_pool pool_type;
|
|
+ const ggml_type type_input;
|
|
const std::array<int64_t, 4> ne_input;
|
|
// kernel size
|
|
- const int k0;
|
|
- const int k1;
|
|
+ const int k0;
|
|
+ const int k1;
|
|
// stride
|
|
- const int s0;
|
|
- const int s1;
|
|
+ const int s0;
|
|
+ const int s1;
|
|
// padding
|
|
- const int p0;
|
|
- const int p1;
|
|
-
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
|
|
- }
|
|
-
|
|
- test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
|
|
- ggml_type type_input = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
|
|
- int k0 = 3, int k1 = 3,
|
|
- int s0 = 1, int s1 = 1,
|
|
- int p0 = 1, int p1 = 1)
|
|
- : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
|
|
+ const int p0;
|
|
+ const int p1;
|
|
+
|
|
+ std::string vars() override { return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1); }
|
|
+
|
|
+ test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG, ggml_type type_input = GGML_TYPE_F32,
|
|
+ std::array<int64_t, 4> ne_input = { 10, 10, 3, 1 }, // [input_width, input_height, input_channels, 1]
|
|
+ int k0 = 3, int k1 = 3, int s0 = 1, int s1 = 1, int p0 = 1, int p1 = 1) :
|
|
+ pool_type(pool_type),
|
|
+ type_input(type_input),
|
|
+ ne_input(ne_input),
|
|
+ k0(k0),
|
|
+ k1(k1),
|
|
+ s0(s0),
|
|
+ s1(s1),
|
|
+ p0(p0),
|
|
+ p1(p1) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
|
|
@@ -2698,18 +2632,21 @@ struct test_conv_transpose_1d : public test_case {
|
|
const std::array<int64_t, 4> ne_input;
|
|
const std::array<int64_t, 4> ne_kernel;
|
|
|
|
- const int s0; // stride
|
|
- const int p0; // padding
|
|
- const int d0; // dilation
|
|
+ const int s0; // stride
|
|
+ const int p0; // padding
|
|
+ const int d0; // dilation
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0); }
|
|
|
|
- test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_height, input_channels, 1]
|
|
- std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, kernel_height, input_channels, 1]
|
|
- int s0 = 1, int p0 = 0, int d0 = 1)
|
|
- : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
|
|
+ test_conv_transpose_1d(
|
|
+ std::array<int64_t, 4> ne_input = { 197, 32, 1, 1 }, // [input_width, input_height, input_channels, 1]
|
|
+ std::array<int64_t, 4> ne_kernel = { 16, 32, 32, 1 }, // [kernel_width, kernel_height, input_channels, 1]
|
|
+ int s0 = 1, int p0 = 0, int d0 = 1) :
|
|
+ ne_input(ne_input),
|
|
+ ne_kernel(ne_kernel),
|
|
+ s0(s0),
|
|
+ p0(p0),
|
|
+ d0(d0) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
|
|
@@ -2727,35 +2664,44 @@ struct test_conv_transpose_1d : public test_case {
|
|
|
|
// GGML_OP_IM2COL
|
|
struct test_im2col : public test_case {
|
|
- const ggml_type type_input;
|
|
- const ggml_type type_kernel;
|
|
- const ggml_type dst_type;
|
|
+ const ggml_type type_input;
|
|
+ const ggml_type type_kernel;
|
|
+ const ggml_type dst_type;
|
|
const std::array<int64_t, 4> ne_input;
|
|
const std::array<int64_t, 4> ne_kernel;
|
|
// stride
|
|
- const int s0;
|
|
- const int s1;
|
|
+ const int s0;
|
|
+ const int s1;
|
|
// padding
|
|
- const int p0;
|
|
- const int p1;
|
|
+ const int p0;
|
|
+ const int p1;
|
|
// dilation
|
|
- const int d0;
|
|
- const int d1;
|
|
+ const int d0;
|
|
+ const int d1;
|
|
// mode
|
|
- const bool is_2D;
|
|
+ const bool is_2D;
|
|
|
|
std::string vars() override {
|
|
return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
|
|
}
|
|
|
|
- test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
|
|
- std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
|
|
- int s0 = 1, int s1 = 1,
|
|
- int p0 = 1, int p1 = 1,
|
|
- int d0 = 1, int d1 = 1,
|
|
- bool is_2D = true)
|
|
- : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
|
|
+ test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16,
|
|
+ ggml_type dst_type = GGML_TYPE_F32,
|
|
+ std::array<int64_t, 4> ne_input = { 10, 10, 3, 1 }, // [input_width, input_height, input_channels, 1]
|
|
+ std::array<int64_t, 4> ne_kernel = { 3, 3, 3, 1 }, // [kernel_width, kernel_height, input_channels, 1]
|
|
+ int s0 = 1, int s1 = 1, int p0 = 1, int p1 = 1, int d0 = 1, int d1 = 1, bool is_2D = true) :
|
|
+ type_input(type_input),
|
|
+ type_kernel(type_kernel),
|
|
+ dst_type(dst_type),
|
|
+ ne_input(ne_input),
|
|
+ ne_kernel(ne_kernel),
|
|
+ s0(s0),
|
|
+ s1(s1),
|
|
+ p0(p0),
|
|
+ p1(p1),
|
|
+ d0(d0),
|
|
+ d1(d1),
|
|
+ is_2D(is_2D) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
|
|
@@ -2776,19 +2722,22 @@ struct test_im2col : public test_case {
|
|
struct test_conv_2d_dw : public test_case {
|
|
const std::array<int64_t, 4> ne_input;
|
|
const std::array<int64_t, 4> ne_kernel;
|
|
- const int stride;
|
|
- const int padding;
|
|
- const int dilation;
|
|
- const bool cwhn;
|
|
-
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR6(ne_input, ne_kernel, stride, padding, dilation, cwhn);
|
|
- }
|
|
-
|
|
- test_conv_2d_dw(std::array<int64_t, 4> ne_input = {64, 64, 16, 1},
|
|
- std::array<int64_t, 4> ne_kernel = {3, 3, 1, 16},
|
|
- int stride = 1, int padding = 0, int dilation = 1, bool cwhn = false)
|
|
- : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride), padding(padding), dilation(dilation), cwhn(cwhn) {}
|
|
+ const int stride;
|
|
+ const int padding;
|
|
+ const int dilation;
|
|
+ const bool cwhn;
|
|
+
|
|
+ std::string vars() override { return VARS_TO_STR6(ne_input, ne_kernel, stride, padding, dilation, cwhn); }
|
|
+
|
|
+ test_conv_2d_dw(std::array<int64_t, 4> ne_input = { 64, 64, 16, 1 },
|
|
+ std::array<int64_t, 4> ne_kernel = { 3, 3, 1, 16 }, int stride = 1, int padding = 0,
|
|
+ int dilation = 1, bool cwhn = false) :
|
|
+ ne_input(ne_input),
|
|
+ ne_kernel(ne_kernel),
|
|
+ stride(stride),
|
|
+ padding(padding),
|
|
+ dilation(dilation),
|
|
+ cwhn(cwhn) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
|
|
@@ -2800,15 +2749,14 @@ struct test_conv_2d_dw : public test_case {
|
|
if (cwhn) {
|
|
// change memory layout to channel-most-contiguous (CWHN),
|
|
// then permute it back so NE matches the original input
|
|
- input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
|
|
- input = ggml_permute(ctx, input, 2, 0, 1, 3);
|
|
+ input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
|
|
+ input = ggml_permute(ctx, input, 2, 0, 1, 3);
|
|
kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
|
|
kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
|
|
}
|
|
|
|
- ggml_tensor * out = ggml_conv_2d_dw_direct(
|
|
- ctx, kernel, input,
|
|
- stride, stride, padding, padding, dilation, dilation);
|
|
+ ggml_tensor * out =
|
|
+ ggml_conv_2d_dw_direct(ctx, kernel, input, stride, stride, padding, padding, dilation, dilation);
|
|
ggml_set_name(out, "out");
|
|
return out;
|
|
}
|
|
@@ -2816,28 +2764,31 @@ struct test_conv_2d_dw : public test_case {
|
|
|
|
// GGML_OP_CONCAT
|
|
struct test_concat : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne_a;
|
|
- const int64_t ne_b_d;
|
|
- const int dim;
|
|
- const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
|
|
+ const int64_t ne_b_d;
|
|
+ const int dim;
|
|
+ const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v); }
|
|
|
|
- test_concat(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne_a = {10, 5, 5, 5},
|
|
- int64_t ne_b_d = 5,
|
|
- int dim = 2, int v = 0)
|
|
- : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
|
|
+ test_concat(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne_a = { 10, 5, 5, 5 }, int64_t ne_b_d = 5,
|
|
+ int dim = 2, int v = 0) :
|
|
+ type(type),
|
|
+ ne_a(ne_a),
|
|
+ ne_b_d(ne_b_d),
|
|
+ dim(dim),
|
|
+ v(v) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
auto ne_b = ne_a;
|
|
ne_b[dim] = ne_b_d;
|
|
ggml_tensor * a;
|
|
if (v & 1) {
|
|
- auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
|
|
+ auto ne = ne_a;
|
|
+ ne[0] *= 2;
|
|
+ ne[1] *= 4;
|
|
+ ne[2] *= 3;
|
|
a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
ggml_set_name(a, "a");
|
|
|
|
@@ -2849,7 +2800,10 @@ struct test_concat : public test_case {
|
|
}
|
|
ggml_tensor * b;
|
|
if (v & 2) {
|
|
- auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
|
|
+ auto ne = ne_b;
|
|
+ ne[0] *= 3;
|
|
+ ne[1] *= 2;
|
|
+ ne[2] *= 4;
|
|
b = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
ggml_set_name(b, "b");
|
|
|
|
@@ -2869,18 +2823,17 @@ struct test_concat : public test_case {
|
|
|
|
// GGML_OP_ARGSORT
|
|
struct test_argsort : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne;
|
|
- ggml_sort_order order;
|
|
+ ggml_sort_order order;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR3(type, ne, order);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR3(type, ne, order); }
|
|
|
|
- test_argsort(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {16, 10, 10, 10},
|
|
- ggml_sort_order order = GGML_SORT_ORDER_ASC)
|
|
- : type(type), ne(ne), order(order) {}
|
|
+ test_argsort(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 16, 10, 10, 10 },
|
|
+ ggml_sort_order order = GGML_SORT_ORDER_ASC) :
|
|
+ type(type),
|
|
+ ne(ne),
|
|
+ order(order) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
@@ -2893,7 +2846,7 @@ struct test_argsort : public test_case {
|
|
}
|
|
|
|
void initialize_tensors(ggml_context * ctx) override {
|
|
- std::random_device rd;
|
|
+ std::random_device rd;
|
|
std::default_random_engine rng(rd());
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
|
if (t->type == GGML_TYPE_I32) {
|
|
@@ -2903,7 +2856,7 @@ struct test_argsort : public test_case {
|
|
data[i] = rand();
|
|
}
|
|
std::shuffle(data.begin(), data.end(), rng);
|
|
- ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
|
|
+ ggml_backend_tensor_set(t, data.data(), 0, ne[0] * ne[1] * ne[2] * ne[3] * sizeof(int));
|
|
} else if (t->type == GGML_TYPE_F32) {
|
|
// initialize with unique values to avoid ties
|
|
for (int64_t r = 0; r < ggml_nrows(t); r++) {
|
|
@@ -2923,16 +2876,12 @@ struct test_argsort : public test_case {
|
|
|
|
// GGML_OP_SUM
|
|
struct test_sum : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR2(type, ne);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR2(type, ne); }
|
|
|
|
- test_sum(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
|
|
- : type(type), ne(ne) {}
|
|
+ test_sum(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 10, 5, 4, 3 }) : type(type), ne(ne) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
@@ -2945,23 +2894,17 @@ struct test_sum : public test_case {
|
|
return out;
|
|
}
|
|
|
|
- float grad_eps() override {
|
|
- return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]);
|
|
- }
|
|
+ float grad_eps() override { return 0.1f * sqrtf(ne[0] * ne[1] * ne[2] * ne[3]); }
|
|
};
|
|
|
|
// GGML_OP_SUM_ROWS
|
|
struct test_sum_rows : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR2(type, ne);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR2(type, ne); }
|
|
|
|
- test_sum_rows(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
|
|
- : type(type), ne(ne) {}
|
|
+ test_sum_rows(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 10, 5, 4, 3 }) : type(type), ne(ne) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
@@ -2977,16 +2920,12 @@ struct test_sum_rows : public test_case {
|
|
|
|
// GGML_OP_MEAN
|
|
struct test_mean : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR2(type, ne);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR2(type, ne); }
|
|
|
|
- test_mean(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
|
|
- : type(type), ne(ne) {}
|
|
+ test_mean(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 10, 5, 4, 3 }) : type(type), ne(ne) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
@@ -2999,27 +2938,26 @@ struct test_mean : public test_case {
|
|
return out;
|
|
}
|
|
|
|
- float grad_eps() override {
|
|
- return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
|
|
- }
|
|
+ float grad_eps() override { return 0.1f * ne[0] * ne[1] * ne[2] * ne[3]; }
|
|
};
|
|
|
|
// GGML_OP_UPSCALE
|
|
struct test_upscale : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne;
|
|
- const int32_t scale_factor;
|
|
- const bool transpose;
|
|
- const ggml_scale_mode mode;
|
|
+ const int32_t scale_factor;
|
|
+ const bool transpose;
|
|
+ const ggml_scale_mode mode;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR5(type, ne, scale_factor, mode, transpose);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR5(type, ne, scale_factor, mode, transpose); }
|
|
|
|
- test_upscale(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {512, 512, 3, 1},
|
|
- int32_t scale_factor = 2, ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST, bool transpose = false)
|
|
- : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose), mode(mode) {}
|
|
+ test_upscale(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 512, 512, 3, 1 },
|
|
+ int32_t scale_factor = 2, ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST, bool transpose = false) :
|
|
+ type(type),
|
|
+ ne(ne),
|
|
+ scale_factor(scale_factor),
|
|
+ transpose(transpose),
|
|
+ mode(mode) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
@@ -3039,26 +2977,25 @@ struct test_upscale : public test_case {
|
|
|
|
// GGML_OP_UPSCALE (ext)
|
|
struct test_upscale_ext : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne;
|
|
const std::array<int64_t, 4> ne_tgt;
|
|
- const ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST;
|
|
+ const ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR4(type, ne, ne_tgt, mode);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR4(type, ne, ne_tgt, mode); }
|
|
|
|
- test_upscale_ext(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {2, 5, 7, 11},
|
|
- std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13},
|
|
- ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST)
|
|
- : type(type), ne(ne), ne_tgt(ne_tgt), mode(mode) {}
|
|
+ test_upscale_ext(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 2, 5, 7, 11 },
|
|
+ std::array<int64_t, 4> ne_tgt = { 5, 7, 11, 13 }, ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST) :
|
|
+ type(type),
|
|
+ ne(ne),
|
|
+ ne_tgt(ne_tgt),
|
|
+ mode(mode) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
ggml_set_name(a, "a");
|
|
|
|
- ggml_tensor * out = ggml_upscale_ext(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3], mode);
|
|
+ ggml_tensor * out = ggml_upscale_ext(ctx, a, ne_tgt[0], ne_tgt[1], ne_tgt[2], ne_tgt[3], mode);
|
|
ggml_set_name(out, "out");
|
|
|
|
return out;
|
|
@@ -3067,20 +3004,19 @@ struct test_upscale_ext : public test_case {
|
|
|
|
// GGML_OP_GROUP_NORM
|
|
struct test_group_norm : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne;
|
|
- const int32_t num_groups;
|
|
- const float eps;
|
|
+ const int32_t num_groups;
|
|
+ const float eps;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR4(type, ne, num_groups, eps);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR4(type, ne, num_groups, eps); }
|
|
|
|
- test_group_norm(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {64, 64, 320, 1},
|
|
- int32_t num_groups = 32,
|
|
- float eps = 1e-6f)
|
|
- : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
|
|
+ test_group_norm(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 64, 64, 320, 1 },
|
|
+ int32_t num_groups = 32, float eps = 1e-6f) :
|
|
+ type(type),
|
|
+ ne(ne),
|
|
+ num_groups(num_groups),
|
|
+ eps(eps) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
@@ -3095,18 +3031,16 @@ struct test_group_norm : public test_case {
|
|
|
|
// GGML_OP_L2_NORM
|
|
struct test_l2_norm : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne;
|
|
- const float eps;
|
|
+ const float eps;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR2(type, ne);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR2(type, ne); }
|
|
|
|
- test_l2_norm(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {64, 64, 320, 1},
|
|
- float eps = 1e-12f)
|
|
- : type(type), ne(ne), eps(eps) {}
|
|
+ test_l2_norm(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 64, 64, 320, 1 }, float eps = 1e-12f) :
|
|
+ type(type),
|
|
+ ne(ne),
|
|
+ eps(eps) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
@@ -3121,18 +3055,17 @@ struct test_l2_norm : public test_case {
|
|
|
|
// GGML_OP_ACC
|
|
struct test_acc : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne_a;
|
|
const std::array<int64_t, 4> ne_b;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR3(type, ne_a, ne_b);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR3(type, ne_a, ne_b); }
|
|
|
|
- test_acc(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
|
|
- std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
|
|
- : type(type), ne_a(ne_a), ne_b(ne_b) {}
|
|
+ test_acc(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne_a = { 256, 17, 1, 1 },
|
|
+ std::array<int64_t, 4> ne_b = { 256, 16, 1, 1 }) :
|
|
+ type(type),
|
|
+ ne_a(ne_a),
|
|
+ ne_b(ne_b) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
|
|
@@ -3152,19 +3085,19 @@ struct test_acc : public test_case {
|
|
|
|
// GGML_OP_PAD
|
|
struct test_pad : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne_a;
|
|
- const int pad_0;
|
|
- const int pad_1;
|
|
+ const int pad_0;
|
|
+ const int pad_1;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR4(type, ne_a, pad_0, pad_1); }
|
|
|
|
- test_pad(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
|
|
- int pad_0 = 1, int pad_1 = 1)
|
|
- : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
|
|
+ test_pad(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne_a = { 512, 512, 1, 1 }, int pad_0 = 1,
|
|
+ int pad_1 = 1) :
|
|
+ type(type),
|
|
+ ne_a(ne_a),
|
|
+ pad_0(pad_0),
|
|
+ pad_1(pad_1) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
|
|
@@ -3179,19 +3112,19 @@ struct test_pad : public test_case {
|
|
|
|
// GGML_OP_PAD_REFLECT_1D
|
|
struct test_pad_reflect_1d : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne_a;
|
|
- const int pad_0;
|
|
- const int pad_1;
|
|
+ const int pad_0;
|
|
+ const int pad_1;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR4(type, ne_a, pad_0, pad_1); }
|
|
|
|
- test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne_a = {512, 34, 2, 1},
|
|
- int pad_0 = 10, int pad_1 = 9)
|
|
- : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
|
|
+ test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne_a = { 512, 34, 2, 1 }, int pad_0 = 10,
|
|
+ int pad_1 = 9) :
|
|
+ type(type),
|
|
+ ne_a(ne_a),
|
|
+ pad_0(pad_0),
|
|
+ pad_1(pad_1) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 2, ne_a.data());
|
|
@@ -3207,17 +3140,17 @@ struct test_pad_reflect_1d : public test_case {
|
|
// GGML_OP_ARANGE
|
|
struct test_arange : public test_case {
|
|
const ggml_type type;
|
|
- const float start;
|
|
- const float stop;
|
|
- const float step;
|
|
+ const float start;
|
|
+ const float stop;
|
|
+ const float step;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR4(type, start, stop, step);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR4(type, start, stop, step); }
|
|
|
|
- test_arange(ggml_type type = GGML_TYPE_F32,
|
|
- float start = 0.f, float stop = 10.f, float step = 1.f)
|
|
- : type(type), start(start), stop(stop), step(step) {}
|
|
+ test_arange(ggml_type type = GGML_TYPE_F32, float start = 0.f, float stop = 10.f, float step = 1.f) :
|
|
+ type(type),
|
|
+ start(start),
|
|
+ stop(stop),
|
|
+ step(step) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * out = ggml_arange(ctx, start, stop, step);
|
|
@@ -3229,19 +3162,19 @@ struct test_arange : public test_case {
|
|
|
|
// GGML_OP_TIMESTEP_EMBEDDING
|
|
struct test_timestep_embedding : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne_a;
|
|
- const int dim;
|
|
- const int max_period;
|
|
+ const int dim;
|
|
+ const int max_period;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR4(type, ne_a, dim, max_period);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR4(type, ne_a, dim, max_period); }
|
|
|
|
- test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
|
|
- int dim = 320, int max_period=10000)
|
|
- : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
|
|
+ test_timestep_embedding(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne_a = { 2, 1, 1, 1 }, int dim = 320,
|
|
+ int max_period = 10000) :
|
|
+ type(type),
|
|
+ ne_a(ne_a),
|
|
+ dim(dim),
|
|
+ max_period(max_period) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
|
|
@@ -3256,18 +3189,17 @@ struct test_timestep_embedding : public test_case {
|
|
|
|
// GGML_OP_LEAKY_RELU
|
|
struct test_leaky_relu : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne_a;
|
|
- const float negative_slope;
|
|
+ const float negative_slope;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR3(type, ne_a, negative_slope);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR3(type, ne_a, negative_slope); }
|
|
|
|
- test_leaky_relu(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne_a = {10, 5, 4, 3},
|
|
- float negative_slope = 0.1f)
|
|
- : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
|
|
+ test_leaky_relu(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne_a = { 10, 5, 4, 3 },
|
|
+ float negative_slope = 0.1f) :
|
|
+ type(type),
|
|
+ ne_a(ne_a),
|
|
+ negative_slope(negative_slope) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
|
|
@@ -3282,66 +3214,77 @@ struct test_leaky_relu : public test_case {
|
|
|
|
// GGML_OP_FLASH_ATTN_EXT
|
|
struct test_flash_attn_ext : public test_case {
|
|
- const int64_t hsk; // K head size
|
|
- const int64_t hsv; // V head size
|
|
- const int64_t nh; // num heads
|
|
- const int64_t nr; // repeat in Q, tests for grouped-query attention
|
|
- const int64_t kv; // kv size
|
|
- const int64_t nb; // batch size
|
|
+ const int64_t hsk; // K head size
|
|
+ const int64_t hsv; // V head size
|
|
+ const int64_t nh; // num heads
|
|
+ const int64_t nr; // repeat in Q, tests for grouped-query attention
|
|
+ const int64_t kv; // kv size
|
|
+ const int64_t nb; // batch size
|
|
|
|
- const bool mask; // use mask
|
|
+ const bool mask; // use mask
|
|
|
|
- const float max_bias; // ALiBi
|
|
- const float logit_softcap; // Gemma 2
|
|
+ const float max_bias; // ALiBi
|
|
+ const float logit_softcap; // Gemma 2
|
|
|
|
- const ggml_prec prec;
|
|
- const ggml_type type_KV;
|
|
+ const ggml_prec prec;
|
|
+ const ggml_type type_KV;
|
|
std::array<int32_t, 4> permute;
|
|
|
|
std::string vars() override {
|
|
return VARS_TO_STR12(hsk, hsv, nh, nr, kv, nb, mask, max_bias, logit_softcap, prec, type_KV, permute);
|
|
}
|
|
|
|
- double max_nmse_err() override {
|
|
- return 5e-4;
|
|
- }
|
|
+ double max_nmse_err() override { return 5e-4; }
|
|
|
|
uint64_t op_flops(ggml_tensor * t) override {
|
|
GGML_UNUSED(t);
|
|
// Just counting matmul costs:
|
|
// Q*K^T is nb x hsk x kv, P*V is nb x kv x hsv, per head
|
|
- return 2 * nh*nr * nb * (hsk + hsv) * kv;
|
|
- }
|
|
-
|
|
- test_flash_attn_ext(int64_t hsk = 128, int64_t hsv = 128, int64_t nh = 32, int64_t nr = 1, int64_t kv = 96, int64_t nb = 8,
|
|
- bool mask = true, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_prec prec = GGML_PREC_F32,
|
|
- ggml_type type_KV = GGML_TYPE_F16, std::array<int32_t, 4> permute = {0, 1, 2, 3})
|
|
- : hsk(hsk), hsv(hsv), nh(nh), nr(nr), kv(kv), nb(nb), mask(mask), max_bias(max_bias), logit_softcap(logit_softcap), prec(prec), type_KV(type_KV), permute(permute) {}
|
|
+ return 2 * nh * nr * nb * (hsk + hsv) * kv;
|
|
+ }
|
|
+
|
|
+ test_flash_attn_ext(int64_t hsk = 128, int64_t hsv = 128, int64_t nh = 32, int64_t nr = 1, int64_t kv = 96,
|
|
+ int64_t nb = 8, bool mask = true, float max_bias = 0.0f, float logit_softcap = 0.0f,
|
|
+ ggml_prec prec = GGML_PREC_F32, ggml_type type_KV = GGML_TYPE_F16,
|
|
+ std::array<int32_t, 4> permute = { 0, 1, 2, 3 }) :
|
|
+ hsk(hsk),
|
|
+ hsv(hsv),
|
|
+ nh(nh),
|
|
+ nr(nr),
|
|
+ kv(kv),
|
|
+ nb(nb),
|
|
+ mask(mask),
|
|
+ max_bias(max_bias),
|
|
+ logit_softcap(logit_softcap),
|
|
+ prec(prec),
|
|
+ type_KV(type_KV),
|
|
+ permute(permute) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
const int64_t hsk_padded = GGML_PAD(hsk, ggml_blck_size(type_KV));
|
|
const int64_t hsv_padded = GGML_PAD(hsv, ggml_blck_size(type_KV));
|
|
|
|
- auto const &create_permuted = [&](ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) -> ggml_tensor * {
|
|
- int64_t ne[4] = {ne0, ne1, ne2, ne3};
|
|
+ const auto & create_permuted = [&](ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2,
|
|
+ int64_t ne3) -> ggml_tensor * {
|
|
+ int64_t ne[4] = { ne0, ne1, ne2, ne3 };
|
|
int64_t ne_perm[4];
|
|
for (int i = 0; i < 4; ++i) {
|
|
ne_perm[permute[i]] = ne[i];
|
|
}
|
|
ggml_tensor * t = ggml_new_tensor_4d(ctx, type, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3]);
|
|
- if (permute != std::array<int32_t, 4>{0, 1, 2, 3}) {
|
|
+ if (permute != std::array<int32_t, 4>{ 0, 1, 2, 3 }) {
|
|
t = ggml_permute(ctx, t, permute[0], permute[1], permute[2], permute[3]);
|
|
}
|
|
return t;
|
|
};
|
|
|
|
- ggml_tensor * q = create_permuted(GGML_TYPE_F32, hsk_padded, nb, nh*nr, 1);
|
|
+ ggml_tensor * q = create_permuted(GGML_TYPE_F32, hsk_padded, nb, nh * nr, 1);
|
|
ggml_set_name(q, "q");
|
|
|
|
- ggml_tensor * k = create_permuted(type_KV, hsk_padded, kv, nh, 1);
|
|
+ ggml_tensor * k = create_permuted(type_KV, hsk_padded, kv, nh, 1);
|
|
ggml_set_name(k, "k");
|
|
|
|
- ggml_tensor * v = create_permuted(type_KV, hsv_padded, kv, nh, 1);
|
|
+ ggml_tensor * v = create_permuted(type_KV, hsv_padded, kv, nh, 1);
|
|
ggml_set_name(v, "v");
|
|
|
|
ggml_tensor * m = nullptr;
|
|
@@ -3350,30 +3293,26 @@ struct test_flash_attn_ext : public test_case {
|
|
ggml_set_name(m, "m");
|
|
}
|
|
|
|
- ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hsk), max_bias, logit_softcap);
|
|
+ ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f / sqrtf(hsk), max_bias, logit_softcap);
|
|
ggml_flash_attn_ext_set_prec(out, prec);
|
|
ggml_set_name(out, "out");
|
|
|
|
return out;
|
|
}
|
|
|
|
- bool grad_precise() override {
|
|
- return true;
|
|
- }
|
|
+ bool grad_precise() override { return true; }
|
|
};
|
|
|
|
// GGML_OP_CROSS_ENTROPY_LOSS
|
|
struct test_cross_entropy_loss : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR2(type, ne);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR2(type, ne); }
|
|
|
|
- test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
|
|
- : type(type), ne(ne) {}
|
|
+ test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 10, 5, 4, 3 }) :
|
|
+ type(type),
|
|
+ ne(ne) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
@@ -3401,27 +3340,21 @@ struct test_cross_entropy_loss : public test_case {
|
|
}
|
|
}
|
|
|
|
- float grad_eps() override {
|
|
- return 1.0f;
|
|
- }
|
|
+ float grad_eps() override { return 1.0f; }
|
|
|
|
- bool grad_precise() override {
|
|
- return true;
|
|
- }
|
|
+ bool grad_precise() override { return true; }
|
|
};
|
|
|
|
// GGML_OP_CROSS_ENTROPY_LOSS_BACK
|
|
struct test_cross_entropy_loss_back : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR2(type, ne);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR2(type, ne); }
|
|
|
|
- test_cross_entropy_loss_back(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
|
|
- : type(type), ne(ne) {}
|
|
+ test_cross_entropy_loss_back(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 10, 5, 4, 3 }) :
|
|
+ type(type),
|
|
+ ne(ne) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * grad = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
|
@@ -3446,20 +3379,18 @@ struct test_cross_entropy_loss_back : public test_case {
|
|
|
|
// GGML_OP_OPT_STEP_ADAMW
|
|
struct test_opt_step_adamw : public test_case {
|
|
- const ggml_type type;
|
|
+ const ggml_type type;
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
- std::string vars() override {
|
|
- return VARS_TO_STR2(type, ne);
|
|
- }
|
|
+ std::string vars() override { return VARS_TO_STR2(type, ne); }
|
|
|
|
- test_opt_step_adamw(ggml_type type = GGML_TYPE_F32,
|
|
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
|
|
- : type(type), ne(ne) {}
|
|
+ test_opt_step_adamw(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = { 10, 5, 4, 3 }) :
|
|
+ type(type),
|
|
+ ne(ne) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
|
|
- ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
|
|
+ ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
|
|
ggml_set_name(a, "a");
|
|
|
|
ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
|
|
@@ -3482,13 +3413,11 @@ struct test_opt_step_adamw : public test_case {
|
|
|
|
void initialize_tensors(ggml_context * ctx) override {
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
|
- init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
|
|
+ init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
|
|
}
|
|
}
|
|
|
|
- bool grad_precise() override {
|
|
- return true;
|
|
- }
|
|
+ bool grad_precise() override { return true; }
|
|
};
|
|
|
|
enum llm_norm_type {
|
|
@@ -3497,30 +3426,30 @@ enum llm_norm_type {
|
|
};
|
|
|
|
struct llama_hparams {
|
|
- uint32_t n_vocab;
|
|
- uint32_t n_embd;
|
|
- uint32_t n_head;
|
|
- uint32_t n_head_kv;
|
|
+ uint32_t n_vocab;
|
|
+ uint32_t n_embd;
|
|
+ uint32_t n_head;
|
|
+ uint32_t n_head_kv;
|
|
static constexpr uint32_t n_layer = 1;
|
|
- uint32_t n_rot;
|
|
- uint32_t n_embd_head; // dimension of values (d_v)
|
|
- uint32_t n_ff;
|
|
+ uint32_t n_rot;
|
|
+ uint32_t n_embd_head; // dimension of values (d_v)
|
|
+ uint32_t n_ff;
|
|
|
|
float f_norm_eps;
|
|
float f_norm_rms_eps;
|
|
|
|
// cparams
|
|
- static constexpr uint32_t n_ctx = 512; // user-specified context size
|
|
+ static constexpr uint32_t n_ctx = 512; // user-specified context size
|
|
static constexpr uint32_t n_ctx_orig = n_ctx;
|
|
|
|
// batch
|
|
int32_t n_tokens;
|
|
|
|
// llm_build_context
|
|
- static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
|
|
- static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
|
|
+ static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
|
|
+ static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
|
|
|
|
- uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
|
|
+ uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
|
|
return n_embd_head * n_head_kv;
|
|
}
|
|
};
|
|
@@ -3529,21 +3458,19 @@ struct llama_hparams {
|
|
struct test_llm : public test_case {
|
|
llama_hparams hp;
|
|
|
|
-protected:
|
|
- test_llm(llama_hparams hp)
|
|
- : hp(std::move(hp)) {
|
|
- }
|
|
+ protected:
|
|
+ test_llm(llama_hparams hp) : hp(std::move(hp)) {}
|
|
|
|
-public:
|
|
- struct ggml_tensor * llm_build_norm(
|
|
- struct ggml_context * ctx,
|
|
- struct ggml_tensor * cur,
|
|
- struct ggml_tensor * mw,
|
|
- struct ggml_tensor * mb,
|
|
- llm_norm_type type) {
|
|
+ public:
|
|
+ struct ggml_tensor * llm_build_norm(struct ggml_context * ctx, struct ggml_tensor * cur, struct ggml_tensor * mw,
|
|
+ struct ggml_tensor * mb, llm_norm_type type) {
|
|
switch (type) {
|
|
- case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
|
|
- case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
|
|
+ case LLM_NORM:
|
|
+ cur = ggml_norm(ctx, cur, hp.f_norm_eps);
|
|
+ break;
|
|
+ case LLM_NORM_RMS:
|
|
+ cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps);
|
|
+ break;
|
|
}
|
|
cur = ggml_mul(ctx, cur, mw);
|
|
if (mb) {
|
|
@@ -3552,42 +3479,30 @@ public:
|
|
return cur;
|
|
}
|
|
|
|
- void llm_build_kv_store(
|
|
- struct ggml_context * ctx,
|
|
- struct ggml_tensor * k_l,
|
|
- struct ggml_tensor * v_l,
|
|
- struct ggml_tensor * k_cur,
|
|
- struct ggml_tensor * v_cur) {
|
|
+ void llm_build_kv_store(struct ggml_context * ctx, struct ggml_tensor * k_l, struct ggml_tensor * v_l,
|
|
+ struct ggml_tensor * k_cur, struct ggml_tensor * v_cur) {
|
|
// compute the transposed [n_tokens, n_embd] V matrix
|
|
struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
|
|
|
|
- struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
|
|
- (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
|
|
+ struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens * hp.n_embd_gqa(),
|
|
+ (ggml_row_size(k_l->type, hp.n_embd_gqa())) *hp.kv_head);
|
|
|
|
- struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
|
|
- ( hp.n_ctx)*ggml_element_size(v_l),
|
|
- (hp.kv_head)*ggml_element_size(v_l));
|
|
+ struct ggml_tensor * v_cache_view =
|
|
+ ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(), (hp.n_ctx) * ggml_element_size(v_l),
|
|
+ (hp.kv_head) * ggml_element_size(v_l));
|
|
|
|
// important: storing RoPE-ed version of K in the KV cache!
|
|
- ggml_cpy(ctx, k_cur, k_cache_view);
|
|
+ ggml_cpy(ctx, k_cur, k_cache_view);
|
|
ggml_cpy(ctx, v_cur_t, v_cache_view);
|
|
}
|
|
|
|
- struct ggml_tensor * llm_build_kqv(
|
|
- struct ggml_context * ctx,
|
|
- struct ggml_tensor * k_l,
|
|
- struct ggml_tensor * v_l,
|
|
- struct ggml_tensor * q_cur,
|
|
- struct ggml_tensor * kq_mask,
|
|
- float kq_scale) {
|
|
+ struct ggml_tensor * llm_build_kqv(struct ggml_context * ctx, struct ggml_tensor * k_l, struct ggml_tensor * v_l,
|
|
+ struct ggml_tensor * q_cur, struct ggml_tensor * kq_mask, float kq_scale) {
|
|
struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
|
|
|
|
struct ggml_tensor * k =
|
|
- ggml_view_3d(ctx, k_l,
|
|
- hp.n_embd_head, hp.n_kv, hp.n_head_kv,
|
|
- ggml_row_size(k_l->type, hp.n_embd_gqa()),
|
|
- ggml_row_size(k_l->type, hp.n_embd_head),
|
|
- 0);
|
|
+ ggml_view_3d(ctx, k_l, hp.n_embd_head, hp.n_kv, hp.n_head_kv, ggml_row_size(k_l->type, hp.n_embd_gqa()),
|
|
+ ggml_row_size(k_l->type, hp.n_embd_head), 0);
|
|
|
|
struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
|
|
|
|
@@ -3595,20 +3510,17 @@ public:
|
|
|
|
// split cached v into n_head heads
|
|
struct ggml_tensor * v =
|
|
- ggml_view_3d(ctx, v_l,
|
|
- hp.n_kv, hp.n_embd_head, hp.n_head_kv,
|
|
- ggml_element_size(v_l)*hp.n_ctx,
|
|
- ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
|
|
- 0);
|
|
+ ggml_view_3d(ctx, v_l, hp.n_kv, hp.n_embd_head, hp.n_head_kv, ggml_element_size(v_l) * hp.n_ctx,
|
|
+ ggml_element_size(v_l) * hp.n_ctx * hp.n_embd_head, 0);
|
|
|
|
struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
|
|
|
|
struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
|
|
|
|
- struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
|
|
+ struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head * hp.n_head, hp.n_tokens);
|
|
|
|
struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
|
|
- cur = ggml_mul_mat(ctx, wo, cur);
|
|
+ cur = ggml_mul_mat(ctx, wo, cur);
|
|
|
|
return cur;
|
|
}
|
|
@@ -3631,12 +3543,12 @@ public:
|
|
|
|
// Llama
|
|
struct test_llama : public test_llm {
|
|
- static constexpr float freq_base = 10000.0f;
|
|
- static constexpr float freq_scale = 1.0f;
|
|
- static constexpr float ext_factor = 0.0f;
|
|
+ static constexpr float freq_base = 10000.0f;
|
|
+ static constexpr float freq_scale = 1.0f;
|
|
+ static constexpr float ext_factor = 0.0f;
|
|
static constexpr float attn_factor = 1.0f;
|
|
- static constexpr float beta_fast = 32.0f;
|
|
- static constexpr float beta_slow = 1.0f;
|
|
+ static constexpr float beta_fast = 32.0f;
|
|
+ static constexpr float beta_slow = 1.0f;
|
|
|
|
std::string op_desc(ggml_tensor * t) override {
|
|
GGML_UNUSED(t);
|
|
@@ -3648,24 +3560,21 @@ struct test_llama : public test_llm {
|
|
return VARS_TO_STR1(n_tokens);
|
|
}
|
|
|
|
- double max_nmse_err() override {
|
|
- return 2e-3;
|
|
- }
|
|
+ double max_nmse_err() override { return 2e-3; }
|
|
|
|
- test_llama(int n_tokens = 1)
|
|
- : test_llm({
|
|
- /*n_vocab =*/ 32000,
|
|
- /*n_embd =*/ 3200,
|
|
- /*n_head =*/ 32,
|
|
- /*n_head_kv =*/ 32,
|
|
- /*n_rot =*/ 100,
|
|
- /*n_embd_head =*/ 100,
|
|
- /*n_ff =*/ 8640,
|
|
- /*f_norm_eps =*/ 0.f,
|
|
- /*f_norm_rms_eps =*/ 1e-5f,
|
|
- /*n_tokens =*/ n_tokens,
|
|
- }) {
|
|
- }
|
|
+ test_llama(int n_tokens = 1) :
|
|
+ test_llm({
|
|
+ /*n_vocab =*/32000,
|
|
+ /*n_embd =*/3200,
|
|
+ /*n_head =*/32,
|
|
+ /*n_head_kv =*/32,
|
|
+ /*n_rot =*/100,
|
|
+ /*n_embd_head =*/100,
|
|
+ /*n_ff =*/8640,
|
|
+ /*f_norm_eps =*/0.f,
|
|
+ /*f_norm_rms_eps =*/1e-5f,
|
|
+ /*n_tokens =*/n_tokens,
|
|
+ }) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
struct ggml_tensor * cur;
|
|
@@ -3687,7 +3596,7 @@ struct test_llama : public test_llm {
|
|
|
|
// norm
|
|
ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
|
|
- cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
|
|
+ cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
|
|
|
|
// self-attention
|
|
{
|
|
@@ -3700,37 +3609,33 @@ struct test_llama : public test_llm {
|
|
struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
|
|
struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
|
|
|
|
- Qcur = ggml_rope_ext(
|
|
- ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
|
|
- hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
|
|
- ext_factor, attn_factor, beta_fast, beta_slow
|
|
- );
|
|
+ Qcur = ggml_rope_ext(ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos,
|
|
+ nullptr, hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale, ext_factor,
|
|
+ attn_factor, beta_fast, beta_slow);
|
|
|
|
- Kcur = ggml_rope_ext(
|
|
- ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
|
|
- hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
|
|
- ext_factor, attn_factor, beta_fast, beta_slow
|
|
- );
|
|
+ Kcur = ggml_rope_ext(ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens),
|
|
+ inp_pos, nullptr, hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale, ext_factor,
|
|
+ attn_factor, beta_fast, beta_slow);
|
|
|
|
llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
|
|
|
|
- cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
|
|
+ cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f / sqrtf(float(hp.n_embd_head)));
|
|
}
|
|
|
|
struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
|
|
|
|
// feed-forward network
|
|
ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
|
|
- cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
|
|
+ cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
|
|
|
|
- ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
|
|
- ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
|
|
- ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
|
|
- struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
|
|
- cur = ggml_mul_mat(ctx, ffn_gate, cur);
|
|
- cur = ggml_silu(ctx, cur);
|
|
- cur = ggml_mul(ctx, cur, tmp);
|
|
- cur = ggml_mul_mat(ctx, ffn_down, cur);
|
|
+ ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
|
|
+ ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
|
|
+ ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
|
|
+ struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
|
|
+ cur = ggml_mul_mat(ctx, ffn_gate, cur);
|
|
+ cur = ggml_silu(ctx, cur);
|
|
+ cur = ggml_mul(ctx, cur, tmp);
|
|
+ cur = ggml_mul_mat(ctx, ffn_down, cur);
|
|
|
|
cur = ggml_add(ctx, cur, ffn_inp);
|
|
|
|
@@ -3741,11 +3646,11 @@ struct test_llama : public test_llm {
|
|
cur = inpL;
|
|
|
|
ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
|
|
- cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
|
|
+ cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
|
|
|
|
// lm_head
|
|
ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
|
|
- cur = ggml_mul_mat(ctx, output, cur);
|
|
+ cur = ggml_mul_mat(ctx, output, cur);
|
|
|
|
return cur;
|
|
}
|
|
@@ -3753,12 +3658,12 @@ struct test_llama : public test_llm {
|
|
|
|
// Falcon
|
|
struct test_falcon : public test_llm {
|
|
- static constexpr float freq_base = 10000.0f;
|
|
- static constexpr float freq_scale = 1.0f;
|
|
- static constexpr float ext_factor = 0.0f;
|
|
+ static constexpr float freq_base = 10000.0f;
|
|
+ static constexpr float freq_scale = 1.0f;
|
|
+ static constexpr float ext_factor = 0.0f;
|
|
static constexpr float attn_factor = 1.0f;
|
|
- static constexpr float beta_fast = 32.0f;
|
|
- static constexpr float beta_slow = 1.0f;
|
|
+ static constexpr float beta_fast = 32.0f;
|
|
+ static constexpr float beta_slow = 1.0f;
|
|
|
|
std::string op_desc(ggml_tensor * t) override {
|
|
GGML_UNUSED(t);
|
|
@@ -3770,24 +3675,21 @@ struct test_falcon : public test_llm {
|
|
return VARS_TO_STR1(n_tokens);
|
|
}
|
|
|
|
- double max_nmse_err() override {
|
|
- return 2e-3;
|
|
- }
|
|
+ double max_nmse_err() override { return 2e-3; }
|
|
|
|
- test_falcon(int n_tokens = 1)
|
|
- : test_llm({
|
|
- /*n_vocab =*/ 32000,
|
|
- /*n_embd =*/ 3200,
|
|
- /*n_head =*/ 50,
|
|
- /*n_head_kv =*/ 1,
|
|
- /*n_rot =*/ 64,
|
|
- /*n_embd_head =*/ 64,
|
|
- /*n_ff =*/ 8640,
|
|
- /*f_norm_eps =*/ 1e-5f,
|
|
- /*f_norm_rms_eps =*/ 0.f,
|
|
- /*n_tokens =*/ n_tokens,
|
|
- }) {
|
|
- }
|
|
+ test_falcon(int n_tokens = 1) :
|
|
+ test_llm({
|
|
+ /*n_vocab =*/32000,
|
|
+ /*n_embd =*/3200,
|
|
+ /*n_head =*/50,
|
|
+ /*n_head_kv =*/1,
|
|
+ /*n_rot =*/64,
|
|
+ /*n_embd_head =*/64,
|
|
+ /*n_ff =*/8640,
|
|
+ /*f_norm_eps =*/1e-5f,
|
|
+ /*f_norm_rms_eps =*/0.f,
|
|
+ /*n_tokens =*/n_tokens,
|
|
+ }) {}
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
struct ggml_tensor * cur;
|
|
@@ -3808,37 +3710,38 @@ struct test_falcon : public test_llm {
|
|
// norm
|
|
ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
|
|
ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
|
|
- ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
|
|
+ ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
|
|
|
|
// self-attention
|
|
{
|
|
cur = attn_norm;
|
|
|
|
- ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
|
|
+ ggml_tensor * wqkv =
|
|
+ ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2 * hp.n_embd_gqa());
|
|
|
|
cur = ggml_mul_mat(ctx, wqkv, cur);
|
|
|
|
- struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
|
|
- struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
|
|
- struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
|
|
+ struct ggml_tensor * Qcur = ggml_cont(
|
|
+ ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0 * sizeof(float) * (hp.n_embd)));
|
|
+ struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens,
|
|
+ cur->nb[1], 1 * sizeof(float) * (hp.n_embd)));
|
|
+ struct ggml_tensor * Vcur =
|
|
+ ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1],
|
|
+ 1 * sizeof(float) * (hp.n_embd + hp.n_embd_gqa())));
|
|
|
|
- Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
|
|
+ Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
|
|
Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
|
|
|
|
// using mode = 2 for neox mode
|
|
- Qcur = ggml_rope_ext(
|
|
- ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
|
|
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
|
|
- );
|
|
+ Qcur = ggml_rope_ext(ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig, freq_base, freq_scale,
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow);
|
|
|
|
- Kcur = ggml_rope_ext(
|
|
- ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
|
|
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
|
|
- );
|
|
+ Kcur = ggml_rope_ext(ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig, freq_base, freq_scale,
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow);
|
|
|
|
llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
|
|
|
|
- cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
|
|
+ cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f / sqrtf(float(hp.n_embd_head)));
|
|
}
|
|
|
|
struct ggml_tensor * ffn_inp = cur;
|
|
@@ -3847,10 +3750,10 @@ struct test_falcon : public test_llm {
|
|
{
|
|
ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
|
|
ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
|
|
- cur = attn_norm;
|
|
- cur = ggml_mul_mat(ctx, ffn_up, cur);
|
|
- cur = ggml_gelu(ctx, cur);
|
|
- cur = ggml_mul_mat(ctx, ffn_down, cur);
|
|
+ cur = attn_norm;
|
|
+ cur = ggml_mul_mat(ctx, ffn_up, cur);
|
|
+ cur = ggml_gelu(ctx, cur);
|
|
+ cur = ggml_mul_mat(ctx, ffn_down, cur);
|
|
}
|
|
|
|
cur = ggml_add(ctx, cur, ffn_inp);
|
|
@@ -3865,65 +3768,80 @@ struct test_falcon : public test_llm {
|
|
|
|
ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
|
|
ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
|
|
- cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
|
|
+ cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
|
|
|
|
// lm_head
|
|
ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
|
|
- cur = ggml_mul_mat(ctx, output, cur);
|
|
+ cur = ggml_mul_mat(ctx, output, cur);
|
|
|
|
return cur;
|
|
}
|
|
};
|
|
|
|
-
|
|
// ###########################################
|
|
// ## Section 3: GGML Op Test Instantiation ##
|
|
// ###########################################
|
|
static const ggml_type all_types[] = {
|
|
- GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
|
|
- GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
|
|
- GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
|
|
+ GGML_TYPE_F32,
|
|
+ GGML_TYPE_F16,
|
|
+ GGML_TYPE_BF16,
|
|
+ GGML_TYPE_Q4_0,
|
|
+ GGML_TYPE_Q4_1,
|
|
+ GGML_TYPE_Q5_0,
|
|
+ GGML_TYPE_Q5_1,
|
|
GGML_TYPE_Q8_0,
|
|
- GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
|
|
- GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
|
|
+ GGML_TYPE_Q2_K,
|
|
+ GGML_TYPE_Q3_K,
|
|
+ GGML_TYPE_Q4_K,
|
|
+ GGML_TYPE_Q5_K,
|
|
GGML_TYPE_Q6_K,
|
|
// GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
|
|
- GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
|
|
- GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
|
|
- GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
|
|
+ GGML_TYPE_IQ2_XXS,
|
|
+ GGML_TYPE_IQ2_XS,
|
|
+ GGML_TYPE_IQ2_S,
|
|
+ GGML_TYPE_IQ3_XXS,
|
|
+ GGML_TYPE_IQ1_S,
|
|
+ GGML_TYPE_IQ1_M,
|
|
+ GGML_TYPE_IQ4_NL,
|
|
+ GGML_TYPE_IQ3_S,
|
|
+ GGML_TYPE_IQ4_XS,
|
|
};
|
|
|
|
-static const ggml_type base_types[] = {
|
|
- GGML_TYPE_F32, GGML_TYPE_F16,
|
|
- GGML_TYPE_Q8_0, // for I8MM tests
|
|
- GGML_TYPE_Q4_0,
|
|
- GGML_TYPE_Q4_1, // for I8MM tests
|
|
- GGML_TYPE_Q4_K,
|
|
- GGML_TYPE_IQ2_XXS
|
|
-};
|
|
+static const ggml_type base_types[] = { GGML_TYPE_F32, GGML_TYPE_F16,
|
|
+ GGML_TYPE_Q8_0, // for I8MM tests
|
|
+ GGML_TYPE_Q4_0,
|
|
+ GGML_TYPE_Q4_1, // for I8MM tests
|
|
+ GGML_TYPE_Q4_K, GGML_TYPE_IQ2_XXS };
|
|
|
|
static const ggml_type other_types[] = {
|
|
GGML_TYPE_Q4_1,
|
|
- GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
|
|
+ GGML_TYPE_Q5_0,
|
|
+ GGML_TYPE_Q5_1,
|
|
GGML_TYPE_Q8_0,
|
|
- GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
|
|
+ GGML_TYPE_Q2_K,
|
|
+ GGML_TYPE_Q3_K,
|
|
GGML_TYPE_Q5_K,
|
|
GGML_TYPE_Q6_K,
|
|
// GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
|
|
- GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
|
|
- GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
|
|
- GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
|
|
+ GGML_TYPE_IQ2_XS,
|
|
+ GGML_TYPE_IQ2_S,
|
|
+ GGML_TYPE_IQ3_XXS,
|
|
+ GGML_TYPE_IQ1_S,
|
|
+ GGML_TYPE_IQ1_M,
|
|
+ GGML_TYPE_IQ4_NL,
|
|
+ GGML_TYPE_IQ3_S,
|
|
+ GGML_TYPE_IQ4_XS,
|
|
GGML_TYPE_BF16,
|
|
};
|
|
|
|
// Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
|
|
static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|
std::vector<std::unique_ptr<test_case>> test_cases;
|
|
- std::default_random_engine rng(0);
|
|
+ std::default_random_engine rng(0);
|
|
|
|
// unary ops
|
|
- for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
|
|
- for (int v : {0, 1}) {
|
|
+ for (ggml_type type : { GGML_TYPE_F16, GGML_TYPE_F32 }) {
|
|
+ for (int v : { 0, 1 }) {
|
|
for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
|
|
test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 128, 2, 2, 2 }, v));
|
|
test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 5, 7, 11, 13 }, v));
|
|
@@ -3933,37 +3851,38 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|
|
|
test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));
|
|
for (ggml_type type : all_types) {
|
|
- for (int b : {1, 7}) {
|
|
- for (bool v : {false, true}) {
|
|
+ for (int b : { 1, 7 }) {
|
|
+ for (bool v : { false, true }) {
|
|
test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v));
|
|
}
|
|
}
|
|
}
|
|
- for (int b : {1, 7}) {
|
|
- for (bool v : {false, true}) {
|
|
+ for (int b : { 1, 7 }) {
|
|
+ for (bool v : { false, true }) {
|
|
test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, v));
|
|
}
|
|
}
|
|
|
|
test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_F32, 1, 8, 2, 1, false));
|
|
for (ggml_type type : all_types) {
|
|
- for (bool v : {false, true}) {
|
|
+ for (bool v : { false, true }) {
|
|
test_cases.emplace_back(new test_get_rows_back(type, 256, 5, 4, 1, v));
|
|
}
|
|
}
|
|
- for (bool v : {false, true}) {
|
|
+ for (bool v : { false, true }) {
|
|
test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_I32, 256, 5, 4, 1, v));
|
|
}
|
|
|
|
- for (ggml_type type_input : {GGML_TYPE_F32}) {
|
|
- for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
|
|
- for (int k0 : {1, 3}) {
|
|
- for (int k1 : {1, 3}) {
|
|
- for (int s0 : {1, 2}) {
|
|
- for (int s1 : {1, 2}) {
|
|
- for (int p0 : {0, 1}) {
|
|
- for (int p1 : {0, 1}) {
|
|
- test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
|
|
+ for (ggml_type type_input : { GGML_TYPE_F32 }) {
|
|
+ for (ggml_op_pool pool_type : { GGML_OP_POOL_AVG, GGML_OP_POOL_MAX }) {
|
|
+ for (int k0 : { 1, 3 }) {
|
|
+ for (int k1 : { 1, 3 }) {
|
|
+ for (int s0 : { 1, 2 }) {
|
|
+ for (int s1 : { 1, 2 }) {
|
|
+ for (int p0 : { 0, 1 }) {
|
|
+ for (int p1 : { 0, 1 }) {
|
|
+ test_cases.emplace_back(new test_pool2d(pool_type, type_input, { 10, 10, 3, 1 }, k0,
|
|
+ k1, s0, s1, p0, p1));
|
|
}
|
|
}
|
|
}
|
|
@@ -3974,15 +3893,17 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|
}
|
|
|
|
// im2col 1D
|
|
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
|
|
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
|
|
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
|
|
- for (int s0 : {1, 3}) {
|
|
- for (int p0 : {0, 3}) {
|
|
- for (int d0 : {1, 3}) {
|
|
- test_cases.emplace_back(new test_im2col(
|
|
- GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1},
|
|
- s0, 0, p0, 0, d0, 0, false));
|
|
+ test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, { 3000, 128, 1, 1 },
|
|
+ { 3, 128, 1280, 1 }, 1, 0, 1, 0, 1, 0, false));
|
|
+ test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, { 3000, 128, 1, 1 },
|
|
+ { 3, 128, 1280, 1 }, 1, 0, 1, 0, 1, 0, false));
|
|
+ test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, { 3000, 128, 1, 1 },
|
|
+ { 3, 128, 1280, 1 }, 1, 0, 1, 0, 1, 0, false));
|
|
+ for (int s0 : { 1, 3 }) {
|
|
+ for (int p0 : { 0, 3 }) {
|
|
+ for (int d0 : { 1, 3 }) {
|
|
+ test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, { 20, 2, 2, 1 },
|
|
+ { 3, 2, 2, 1 }, s0, 0, p0, 0, d0, 0, false));
|
|
}
|
|
}
|
|
}
|
|
@@ -3991,15 +3912,15 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
|
|
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
|
|
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
|
|
- for (int s0 : {1, 3}) {
|
|
- for (int s1 : {1, 3}) {
|
|
- for (int p0 : {0, 3}) {
|
|
- for (int p1 : {0, 3}) {
|
|
- for (int d0 : {1, 3}) {
|
|
- for (int d1 : {1, 3}) {
|
|
- test_cases.emplace_back(new test_im2col(
|
|
- GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2},
|
|
- s0, s1, p0, p1, d0, d1, true));
|
|
+ for (int s0 : { 1, 3 }) {
|
|
+ for (int s1 : { 1, 3 }) {
|
|
+ for (int p0 : { 0, 3 }) {
|
|
+ for (int p1 : { 0, 3 }) {
|
|
+ for (int d0 : { 1, 3 }) {
|
|
+ for (int d1 : { 1, 3 }) {
|
|
+ test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32,
|
|
+ { 20, 20, 2, 2 }, { 3, 3, 2, 2 }, s0, s1, p0, p1,
|
|
+ d0, d1, true));
|
|
}
|
|
}
|
|
}
|
|
@@ -4008,14 +3929,22 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|
}
|
|
|
|
// extra tests for im2col 2D
|
|
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true));
|
|
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true));
|
|
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true));
|
|
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true));
|
|
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true));
|
|
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true));
|
|
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true));
|
|
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
|
|
+ test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, { 12, 12, 1, 32 },
|
|
+ { 3, 3, 1, 32 }, 1, 1, 1, 1, 1, 1, true));
|
|
+ test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, { 12, 12, 2, 32 },
|
|
+ { 3, 3, 2, 32 }, 1, 1, 1, 1, 1, 1, true));
|
|
+ test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, { 12, 12, 1, 1024 },
|
|
+ { 3, 3, 1, 1024 }, 1, 1, 1, 1, 1, 1, true));
|
|
+ test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, { 12, 12, 2, 1024 },
|
|
+ { 3, 3, 2, 1024 }, 1, 1, 1, 1, 1, 1, true));
|
|
+ test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, { 12, 12, 1, 2048 },
|
|
+ { 3, 3, 1, 2048 }, 1, 1, 1, 1, 1, 1, true));
|
|
+ test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, { 12, 12, 2, 2048 },
|
|
+ { 3, 3, 2, 2048 }, 1, 1, 1, 1, 1, 1, true));
|
|
+ test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, { 12, 12, 1, 2560 },
|
|
+ { 3, 3, 1, 2560 }, 1, 1, 1, 1, 1, 1, true));
|
|
+ test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, { 12, 12, 2, 2560 },
|
|
+ { 3, 3, 2, 2560 }, 1, 1, 1, 1, 1, 1, true));
|
|
|
|
// sycl backend will limit task global_range < MAX_INT
|
|
// test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
|
|
@@ -4024,65 +3953,65 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|
// test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
|
|
// test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
|
|
|
|
- test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, false));
|
|
- test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, true));
|
|
- test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, false));
|
|
- test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, true));
|
|
+ test_cases.emplace_back(new test_conv_2d_dw({ 17, 34, 9, 1 }, { 3, 3, 1, 9 }, 1, 0, 1, false));
|
|
+ test_cases.emplace_back(new test_conv_2d_dw({ 17, 34, 9, 1 }, { 3, 3, 1, 9 }, 1, 0, 1, true));
|
|
+ test_cases.emplace_back(new test_conv_2d_dw({ 32, 8, 64, 1 }, { 3, 3, 1, 64 }, 2, 1, 1, false));
|
|
+ test_cases.emplace_back(new test_conv_2d_dw({ 32, 8, 64, 1 }, { 3, 3, 1, 64 }, 2, 1, 1, true));
|
|
|
|
test_cases.emplace_back(new test_conv_transpose_1d());
|
|
- test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
|
|
- test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
|
|
- test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
|
|
- test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
|
|
- test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
|
|
- test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
|
|
- test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
|
|
-
|
|
- test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 500, 1, 1}));
|
|
- test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1}));
|
|
-
|
|
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
|
|
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
|
|
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
|
|
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 12, 1, 1}));
|
|
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
|
|
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {5438, 3, 1, 1}));
|
|
-
|
|
- for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
|
|
- test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1}));
|
|
- test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
|
|
- test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1}));
|
|
- test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1}));
|
|
- test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2}));
|
|
- test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
|
|
- test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
|
|
- }
|
|
-
|
|
- for (bool view : {false, true}) {
|
|
- test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 1}, view));
|
|
- test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {2, 1, 1, 1}, view));
|
|
- test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 2, 1, 1}, view));
|
|
- test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 2, 1}, view));
|
|
- test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 2}, view));
|
|
+ test_cases.emplace_back(new test_conv_transpose_1d({ 3, 2, 1, 1 }, { 2, 3, 2, 1 }, 3, 0, 1));
|
|
+ test_cases.emplace_back(new test_conv_transpose_1d({ 3, 2, 1, 1 }, { 2, 3, 2, 1 }, 2, 0, 1));
|
|
+ test_cases.emplace_back(new test_conv_transpose_1d({ 3, 2, 1, 1 }, { 2, 3, 2, 1 }, 1, 0, 1));
|
|
+ test_cases.emplace_back(new test_conv_transpose_1d({ 3, 2, 1, 1 }, { 3, 2, 2, 1 }, 2, 0, 1));
|
|
+ test_cases.emplace_back(new test_conv_transpose_1d({ 3, 2, 1, 1 }, { 3, 2, 2, 1 }, 1, 0, 1));
|
|
+ test_cases.emplace_back(new test_conv_transpose_1d({ 3, 2, 1, 1 }, { 3, 1, 2, 1 }, 1, 0, 1));
|
|
+ test_cases.emplace_back(new test_conv_transpose_1d({ 2, 1, 1, 1 }, { 3, 1, 1, 1 }, 1, 0, 1));
|
|
+
|
|
+ test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, { 4, 500, 1, 1 }));
|
|
+ test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, { 4, 5000, 1, 1 }));
|
|
+
|
|
+ test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, { 32, 1, 1, 1 }));
|
|
+ test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, { 100, 10, 1, 1 }));
|
|
+ test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, { 1024, 10, 1, 1 }));
|
|
+ test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, { 1024, 12, 1, 1 }));
|
|
+ test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, { 2000, 10, 1, 1 }));
|
|
+ test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, { 5438, 3, 1, 1 }));
|
|
+
|
|
+ for (int ne3 : { 1, 3 }) { // CUDA backward pass only supports ne3 == 1
|
|
+ test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, { 10, 5, 4, ne3 }, { 1, 1, 1, 1 }));
|
|
+ test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, { 10, 5, 4, ne3 }, { 2, 1, 1, 1 }));
|
|
+ test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, { 10, 5, 4, ne3 }, { 1, 2, 1, 1 }));
|
|
+ test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, { 10, 5, 4, ne3 }, { 1, 1, 2, 1 }));
|
|
+ test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, { 10, 5, 4, ne3 }, { 1, 1, 1, 2 }));
|
|
+ test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, { 10, 5, 4, ne3 }, { 2, 1, 1, 1 }));
|
|
+ test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, { 10, 5, 4, ne3 }, { 1, 1, 1, 2 }));
|
|
+ }
|
|
+
|
|
+ for (bool view : { false, true }) {
|
|
+ test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, { 8, 6, 4, 2 }, { 1, 1, 1, 1 }, view));
|
|
+ test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, { 8, 6, 4, 2 }, { 2, 1, 1, 1 }, view));
|
|
+ test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, { 8, 6, 4, 2 }, { 1, 2, 1, 1 }, view));
|
|
+ test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, { 8, 6, 4, 2 }, { 1, 1, 2, 1 }, view));
|
|
+ test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, { 8, 6, 4, 2 }, { 1, 1, 1, 2 }, view));
|
|
}
|
|
|
|
test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
|
|
test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
|
|
test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
|
|
test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
|
|
- test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
|
|
- test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
|
|
- test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
|
|
- test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
|
|
- test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
|
|
- test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
|
|
+ test_cases.emplace_back(new test_dup(GGML_TYPE_F32, { 10, 10, 5, 1 }, { 0, 2, 1, 3 }));
|
|
+ test_cases.emplace_back(new test_dup(GGML_TYPE_F16, { 10, 10, 5, 1 }, { 0, 2, 1, 3 })); // dup by rows
|
|
+ test_cases.emplace_back(new test_dup(GGML_TYPE_F32, { 10, 10, 5, 1 }, { 1, 0, 2, 3 }));
|
|
+ test_cases.emplace_back(new test_dup(GGML_TYPE_F16, { 10, 10, 5, 1 }, { 1, 0, 2, 3 })); // dup dst not-contiguous
|
|
+ test_cases.emplace_back(new test_dup(GGML_TYPE_I16, { 10, 8, 3, 1 }, { 0, 2, 1, 3 }));
|
|
+ test_cases.emplace_back(new test_dup(GGML_TYPE_I16, { 10, 8, 3, 1 }, { 1, 2, 0, 3 }));
|
|
|
|
for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
|
|
- test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
|
|
+ test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, { 6, 5, 4, 3 }, dim));
|
|
}
|
|
|
|
for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
|
|
- test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
|
|
+ test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, { 6, 5, 4, 3 }, dim));
|
|
}
|
|
|
|
// same-type copy
|
|
@@ -4090,75 +4019,76 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|
const auto nk = ggml_blck_size(type);
|
|
|
|
for (int k = 1; k < 4; ++k) {
|
|
- test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}));
|
|
- test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 2, 1, 3}));
|
|
- test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 3, 1, 2}, {0, 2, 1, 3}));
|
|
+ test_cases.emplace_back(new test_cpy(type, type, { k * nk, 2, 3, 4 }));
|
|
+ test_cases.emplace_back(new test_cpy(type, type, { k * nk, 2, 3, 4 }, { 0, 2, 1, 3 }));
|
|
+ test_cases.emplace_back(new test_cpy(type, type, { k * nk, 2, 3, 4 }, { 0, 3, 1, 2 }, { 0, 2, 1, 3 }));
|
|
}
|
|
}
|
|
|
|
- for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
|
|
+ for (ggml_type type_src : { GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32 }) {
|
|
for (ggml_type type_dst : all_types) {
|
|
- test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
|
|
- test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
|
|
+ test_cases.emplace_back(new test_cpy(type_src, type_dst, { 256, 4, 4, 4 }));
|
|
+ test_cases.emplace_back(new test_cpy(type_src, type_dst, { 256, 2, 3, 4 }, { 0, 2, 1, 3 })); // cpy by rows
|
|
}
|
|
}
|
|
for (ggml_type type_src : all_types) {
|
|
- for (ggml_type type_dst : {GGML_TYPE_F32}) {
|
|
- test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
|
|
- test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
|
|
+ for (ggml_type type_dst : { GGML_TYPE_F32 }) {
|
|
+ test_cases.emplace_back(new test_cpy(type_src, type_dst, { 256, 4, 4, 4 }));
|
|
+ test_cases.emplace_back(new test_cpy(type_src, type_dst, { 256, 2, 3, 4 }, { 0, 2, 1, 3 })); // cpy by rows
|
|
}
|
|
}
|
|
- for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
|
|
- for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
|
|
- test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
|
|
+ for (ggml_type type_src : { GGML_TYPE_F16, GGML_TYPE_F32 }) {
|
|
+ for (ggml_type type_dst : { GGML_TYPE_F16, GGML_TYPE_F32 }) {
|
|
+ test_cases.emplace_back(
|
|
+ new test_cpy(type_src, type_dst, { 256, 2, 3, 4 }, { 1, 0, 2, 3 })); // cpy not-contiguous
|
|
}
|
|
}
|
|
|
|
test_cases.emplace_back(new test_cont());
|
|
- test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 1 ,1}));
|
|
- test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 3 ,5}));
|
|
- test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 3, 5 ,7}));
|
|
- test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 1 ,1}));
|
|
- test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 3 ,5}));
|
|
- test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 3, 5 ,7}));
|
|
- test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 1 ,1}));
|
|
- test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 3 ,5}));
|
|
- test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 3, 5 ,7}));
|
|
+ test_cases.emplace_back(new test_cont(GGML_TYPE_F32, { 2, 1, 1, 1 }));
|
|
+ test_cases.emplace_back(new test_cont(GGML_TYPE_F32, { 2, 1, 3, 5 }));
|
|
+ test_cases.emplace_back(new test_cont(GGML_TYPE_F32, { 2, 3, 5, 7 }));
|
|
+ test_cases.emplace_back(new test_cont(GGML_TYPE_F16, { 2, 1, 1, 1 }));
|
|
+ test_cases.emplace_back(new test_cont(GGML_TYPE_F16, { 2, 1, 3, 5 }));
|
|
+ test_cases.emplace_back(new test_cont(GGML_TYPE_F16, { 2, 3, 5, 7 }));
|
|
+ test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, { 2, 1, 1, 1 }));
|
|
+ test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, { 2, 1, 3, 5 }));
|
|
+ test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, { 2, 3, 5, 7 }));
|
|
|
|
auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
|
|
- for (auto op : {ggml_add, ggml_sub, ggml_mul, ggml_div}) {
|
|
+ for (auto op : { ggml_add, ggml_sub, ggml_mul, ggml_div }) {
|
|
test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
|
|
}
|
|
};
|
|
- for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
|
|
- add_test_bin_bcast(type, {1, 1, 8, 1}, {1, 1, 1, 1});
|
|
- add_test_bin_bcast(type, {1, 1, 1, 1}, {32, 1, 1, 1});
|
|
- add_test_bin_bcast(type, {1, 1, 320, 320}, {1, 1, 1, 1});
|
|
- add_test_bin_bcast(type, {10, 5, 1, 1}, {1, 1, 1, 1});
|
|
- add_test_bin_bcast(type, {10, 5, 4, 1}, {1, 1, 1, 1});
|
|
- add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 1});
|
|
- add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 1, 1, 1});
|
|
- add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 1, 1});
|
|
- add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 1});
|
|
- add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 2});
|
|
- add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 2});
|
|
- add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 2, 2});
|
|
- add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 2, 2, 2});
|
|
+ for (ggml_type type : { GGML_TYPE_F16, GGML_TYPE_F32 }) {
|
|
+ add_test_bin_bcast(type, { 1, 1, 8, 1 }, { 1, 1, 1, 1 });
|
|
+ add_test_bin_bcast(type, { 1, 1, 1, 1 }, { 32, 1, 1, 1 });
|
|
+ add_test_bin_bcast(type, { 1, 1, 320, 320 }, { 1, 1, 1, 1 });
|
|
+ add_test_bin_bcast(type, { 10, 5, 1, 1 }, { 1, 1, 1, 1 });
|
|
+ add_test_bin_bcast(type, { 10, 5, 4, 1 }, { 1, 1, 1, 1 });
|
|
+ add_test_bin_bcast(type, { 10, 5, 4, 3 }, { 1, 1, 1, 1 });
|
|
+ add_test_bin_bcast(type, { 10, 5, 4, 3 }, { 2, 1, 1, 1 });
|
|
+ add_test_bin_bcast(type, { 10, 5, 4, 3 }, { 1, 2, 1, 1 });
|
|
+ add_test_bin_bcast(type, { 10, 5, 4, 3 }, { 1, 1, 2, 1 });
|
|
+ add_test_bin_bcast(type, { 10, 5, 4, 3 }, { 1, 1, 1, 2 });
|
|
+ add_test_bin_bcast(type, { 10, 5, 4, 3 }, { 1, 1, 2, 2 });
|
|
+ add_test_bin_bcast(type, { 10, 5, 4, 3 }, { 1, 2, 2, 2 });
|
|
+ add_test_bin_bcast(type, { 10, 5, 4, 3 }, { 2, 2, 2, 2 });
|
|
|
|
// stable diffusion
|
|
- add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 1, 1, 1});
|
|
- add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 16, 16, 1});
|
|
- add_test_bin_bcast(type, {1280, 16, 16, 1}, {1, 1, 1, 1});
|
|
- add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 256, 1, 1});
|
|
- add_test_bin_bcast(type, {1, 1, 1280, 1}, {16, 16, 1, 1});
|
|
- add_test_bin_bcast(type, {16, 16, 1280, 1}, {1, 1, 1, 1});
|
|
- add_test_bin_bcast(type, {1, 1, 1920, 1}, {16, 16, 1, 1});
|
|
- add_test_bin_bcast(type, {1, 1, 2560, 1}, {16, 16, 1, 1});
|
|
- add_test_bin_bcast(type, {1, 1, 1280, 1}, {32, 32, 1, 1});
|
|
- add_test_bin_bcast(type, {1, 1, 1920, 1}, {32, 32, 1, 1});
|
|
- add_test_bin_bcast(type, {1, 1, 640, 1}, {32, 32, 1, 1});
|
|
- add_test_bin_bcast(type, {5120, 1, 1, 1}, {1, 256, 1, 1});
|
|
- add_test_bin_bcast(type, {640, 1, 1, 1}, {1, 1, 1, 1});
|
|
+ add_test_bin_bcast(type, { 1280, 1, 1, 1 }, { 1, 1, 1, 1 });
|
|
+ add_test_bin_bcast(type, { 1280, 1, 1, 1 }, { 1, 16, 16, 1 });
|
|
+ add_test_bin_bcast(type, { 1280, 16, 16, 1 }, { 1, 1, 1, 1 });
|
|
+ add_test_bin_bcast(type, { 1280, 1, 1, 1 }, { 1, 256, 1, 1 });
|
|
+ add_test_bin_bcast(type, { 1, 1, 1280, 1 }, { 16, 16, 1, 1 });
|
|
+ add_test_bin_bcast(type, { 16, 16, 1280, 1 }, { 1, 1, 1, 1 });
|
|
+ add_test_bin_bcast(type, { 1, 1, 1920, 1 }, { 16, 16, 1, 1 });
|
|
+ add_test_bin_bcast(type, { 1, 1, 2560, 1 }, { 16, 16, 1, 1 });
|
|
+ add_test_bin_bcast(type, { 1, 1, 1280, 1 }, { 32, 32, 1, 1 });
|
|
+ add_test_bin_bcast(type, { 1, 1, 1920, 1 }, { 32, 32, 1, 1 });
|
|
+ add_test_bin_bcast(type, { 1, 1, 640, 1 }, { 32, 32, 1, 1 });
|
|
+ add_test_bin_bcast(type, { 5120, 1, 1, 1 }, { 1, 256, 1, 1 });
|
|
+ add_test_bin_bcast(type, { 640, 1, 1, 1 }, { 1, 1, 1, 1 });
|
|
//add_test_bin_bcast(type, {3, 3, 2560, 1280}, {1, 1, 1, 1});
|
|
//add_test_bin_bcast(type, {3, 3, 2560, 1280}, {2, 1, 1, 1});
|
|
}
|
|
@@ -4167,20 +4097,20 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|
test_cases.emplace_back(new test_scale());
|
|
test_cases.emplace_back(new test_silu_back());
|
|
|
|
- for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
|
|
- for (bool v : {false, true}) {
|
|
- test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
|
|
- test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
|
|
+ for (float eps : { 0.0f, 1e-6f, 1e-4f, 1e-1f }) {
|
|
+ for (bool v : { false, true }) {
|
|
+ test_cases.emplace_back(new test_norm(GGML_TYPE_F32, { 64, 5, 4, 3 }, v, eps));
|
|
+ test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, { 64, 5, 4, 3 }, v, eps));
|
|
}
|
|
- test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
|
|
- test_cases.emplace_back(new test_l2_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
|
|
+ test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, { 64, 5, 4, 3 }, eps));
|
|
+ test_cases.emplace_back(new test_l2_norm(GGML_TYPE_F32, { 64, 5, 4, 3 }, eps));
|
|
}
|
|
|
|
- test_cases.emplace_back(new test_l2_norm(GGML_TYPE_F32, {64, 5, 4, 3}, 1e-12f));
|
|
+ test_cases.emplace_back(new test_l2_norm(GGML_TYPE_F32, { 64, 5, 4, 3 }, 1e-12f));
|
|
|
|
- test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 1, 1}, {4, 1536, 1, 1}));
|
|
- test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, 1536, 1, 1}, {4, 1536, 1, 1}));
|
|
- test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 4, 1}, {4, 1536, 1, 1}));
|
|
+ test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, { 4, 1536, 1, 1 }, { 4, 1536, 1, 1 }));
|
|
+ test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, { 8, 1536, 1, 1 }, { 4, 1536, 1, 1 }));
|
|
+ test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, { 4, 1536, 4, 1 }, { 4, 1536, 1, 1 }));
|
|
|
|
test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1024, 32, 4));
|
|
|
|
@@ -4201,59 +4131,60 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|
|
|
for (ggml_type type_a : all_types) {
|
|
for (int i = 1; i < 10; ++i) {
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, GGML_TYPE_F32, 16, i, 256, { 1, 1 }, { 1, 1 }));
|
|
}
|
|
}
|
|
|
|
#if 1
|
|
for (ggml_type type_a : base_types) {
|
|
- for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
|
|
+ for (ggml_type type_b : { GGML_TYPE_F32, GGML_TYPE_F16 }) {
|
|
// test cases without permutation
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {2, 1}));
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 2}));
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 1}, {1, 1}));
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 1}, {2, 1}));
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {1, 1}));
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {2, 1}));
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {1, 2}));
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {2, 2}));
|
|
-
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {1, 1}, {1, 1}));
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {1, 1}, {2, 1}));
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {1, 1}, {1, 2}));
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 1}, {1, 1}));
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 1}, {2, 1}));
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {1, 1}));
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {2, 1}));
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {1, 2}));
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {2, 2}));
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1 }, { 1, 1 }));
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1 }, { 2, 1 }));
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1 }, { 1, 2 }));
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 3, 1 }, { 1, 1 }));
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 3, 1 }, { 2, 1 }));
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 3, 2 }, { 1, 1 }));
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 3, 2 }, { 2, 1 }));
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 3, 2 }, { 1, 2 }));
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 3, 2 }, { 2, 2 }));
|
|
+
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, { 1, 1 }, { 1, 1 }));
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, { 1, 1 }, { 2, 1 }));
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, { 1, 1 }, { 1, 2 }));
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, { 3, 1 }, { 1, 1 }));
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, { 3, 1 }, { 2, 1 }));
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, { 3, 2 }, { 1, 1 }));
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, { 3, 2 }, { 2, 1 }));
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, { 3, 2 }, { 1, 2 }));
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, { 3, 2 }, { 2, 2 }));
|
|
|
|
// test cases with permutation
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 2, 3 }, { 1, 1 }, { 0, 2, 1, 3 }));
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 2, 3 }, { 1, 1 }, { 0, 1, 3, 2 }));
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 2, 3 }, { 1, 1 }, { 0, 3, 2, 1 }));
|
|
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, { 2, 3 }, { 1, 1 }, { 0, 2, 1, 3 }));
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, { 2, 3 }, { 1, 1 }, { 0, 1, 3, 2 }));
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, { 2, 3 }, { 1, 1 }, { 0, 3, 2, 1 }));
|
|
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, { 2, 3 }, { 1, 1 }, { 0, 2, 1, 3 }));
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, { 2, 3 }, { 1, 1 }, { 0, 1, 3, 2 }));
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, { 2, 3 }, { 1, 1 }, { 0, 3, 2, 1 }));
|
|
|
|
// test cases with large ne00/ne10 to cover stream-k fixup
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 1024, {3, 2}, {1, 1}));
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 1024, {3, 2}, {1, 1}));
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 1024, {3, 2}, {1, 1}));
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 1024, { 3, 2 }, { 1, 1 }));
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 1024, { 3, 2 }, { 1, 1 }));
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 1024, { 3, 2 }, { 1, 1 }));
|
|
}
|
|
}
|
|
for (ggml_type type_a : other_types) {
|
|
- for (ggml_type type_b : {GGML_TYPE_F32}) {
|
|
+ for (ggml_type type_b : { GGML_TYPE_F32 }) {
|
|
if (ggml_blck_size(type_a) != 256) {
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
|
|
+ test_cases.emplace_back(
|
|
+ new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), { 1, 1 }, { 1, 1 }));
|
|
}
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1 }, { 1, 1 }));
|
|
}
|
|
}
|
|
#else
|
|
@@ -4265,31 +4196,35 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|
std::uniform_int_distribution<> dist_k(1, 16);
|
|
for (int i = 0; i < 1000; i++) {
|
|
for (ggml_type type_a : all_types) {
|
|
- for (ggml_type type_b : {GGML_TYPE_F32}) {
|
|
+ for (ggml_type type_b : { GGML_TYPE_F32 }) {
|
|
int m = dist_m(rng);
|
|
int n = dist_n(rng);
|
|
int k = dist_k(rng) * ggml_blck_size(type_a);
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1 }, { 1, 1 }));
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
|
|
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
|
|
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
|
|
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
|
|
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
|
|
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
|
|
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 193, {1, 1}, {4, 1}, {0, 2, 1, 3}));
|
|
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 67, {1, 1}, {4, 1}, {0, 2, 1, 3}));
|
|
-
|
|
- for (auto bs : {1,2,4,8}) {
|
|
- for (auto nr : {1,4}) {
|
|
+ test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1 }, { 1, 1 }));
|
|
+ test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1 }, { 4, 1 }));
|
|
+ test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1 }, { 4, 1 }));
|
|
+ test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1 }, { 4, 1 }));
|
|
+ test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1 }, { 4, 1 }));
|
|
+ test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1 }, { 4, 1 }));
|
|
+ test_cases.emplace_back(
|
|
+ new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 193, { 1, 1 }, { 4, 1 }, { 0, 2, 1, 3 }));
|
|
+ test_cases.emplace_back(
|
|
+ new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 67, { 1, 1 }, { 4, 1 }, { 0, 2, 1, 3 }));
|
|
+
|
|
+ for (auto bs : { 1, 2, 4, 8 }) {
|
|
+ for (auto nr : { 1, 4 }) {
|
|
for (uint32_t m = 0; m < 2; ++m) {
|
|
for (uint32_t k = 0; k < 2; ++k) {
|
|
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056 + m, 1, 128 + k, {bs, 1}, {nr, 1}, {0, 2, 1, 3}));
|
|
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128 + m, 1, 1056 + k, {bs, 1}, {nr, 1}, {0, 1, 2, 3}, true));
|
|
+ test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056 + m, 1, 128 + k,
|
|
+ { bs, 1 }, { nr, 1 }, { 0, 2, 1, 3 }));
|
|
+ test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128 + m, 1, 1056 + k,
|
|
+ { bs, 1 }, { nr, 1 }, { 0, 1, 2, 3 }, true));
|
|
}
|
|
}
|
|
}
|
|
@@ -4302,11 +4237,11 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|
// test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1}));
|
|
|
|
for (ggml_type type_a : base_types) {
|
|
- for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
|
|
- for (int n_mats : {4, 8}) {
|
|
- for (int n_used : {1, 2, 4}) {
|
|
- for (bool b : {false, true}) {
|
|
- for (int n : {1, 32, 129}) {
|
|
+ for (ggml_type type_b : { GGML_TYPE_F32 /*, GGML_TYPE_F16 */ }) {
|
|
+ for (int n_mats : { 4, 8 }) {
|
|
+ for (int n_used : { 1, 2, 4 }) {
|
|
+ for (bool b : { false, true }) {
|
|
+ for (int n : { 1, 32, 129 }) {
|
|
int m = 512;
|
|
int k = 256;
|
|
test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
|
|
@@ -4318,11 +4253,11 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|
}
|
|
|
|
for (ggml_type type_a : other_types) {
|
|
- for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
|
|
- for (int n_mats : {4}) {
|
|
- for (int n_used : {2}) {
|
|
- for (bool b : {false}) {
|
|
- for (int n : {1, 32}) {
|
|
+ for (ggml_type type_b : { GGML_TYPE_F32 /*, GGML_TYPE_F16 */ }) {
|
|
+ for (int n_mats : { 4 }) {
|
|
+ for (int n_used : { 2 }) {
|
|
+ for (bool b : { false }) {
|
|
+ for (int n : { 1, 32 }) {
|
|
int m = 512;
|
|
int k = 256;
|
|
test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
|
|
@@ -4334,14 +4269,15 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|
}
|
|
|
|
for (ggml_type type_a : base_types) {
|
|
- for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
|
|
- for (int n : {1, 16}) {
|
|
- for (int k : {1, 16}) {
|
|
- for (int bs2 : {1, 3}) {
|
|
- for (int bs3 : {1, 3}) {
|
|
- for (int nr2 : {1, 2}) {
|
|
- for (int nr3 : {1, 2}) {
|
|
- test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, n, k, {bs2, bs3}, {nr2, nr3}));
|
|
+ for (ggml_type type_b : { GGML_TYPE_F32, GGML_TYPE_F16 }) {
|
|
+ for (int n : { 1, 16 }) {
|
|
+ for (int k : { 1, 16 }) {
|
|
+ for (int bs2 : { 1, 3 }) {
|
|
+ for (int bs3 : { 1, 3 }) {
|
|
+ for (int nr2 : { 1, 2 }) {
|
|
+ for (int nr3 : { 1, 2 }) {
|
|
+ test_cases.emplace_back(
|
|
+ new test_out_prod(type_a, type_b, 256, n, k, { bs2, bs3 }, { nr2, nr3 }));
|
|
}
|
|
}
|
|
}
|
|
@@ -4351,7 +4287,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|
}
|
|
}
|
|
|
|
- for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
|
|
+ for (ggml_type type : { GGML_TYPE_F16, GGML_TYPE_F32 }) {
|
|
test_cases.emplace_back(new test_sqr(type));
|
|
test_cases.emplace_back(new test_sqrt(type));
|
|
test_cases.emplace_back(new test_log(type));
|
|
@@ -4360,9 +4296,9 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|
test_cases.emplace_back(new test_clamp(type));
|
|
}
|
|
|
|
- test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
|
|
- test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5));
|
|
- test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5));
|
|
+ test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, { 10, 10, 1, 1 }, 5));
|
|
+ test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, { 10, 10, 3, 1 }, 5));
|
|
+ test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, { 10, 10, 3, 2 }, 5));
|
|
|
|
#if 0
|
|
std::uniform_int_distribution<> dist_ne1(1, 50);
|
|
@@ -4379,78 +4315,101 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|
exponent <<= 1;
|
|
}
|
|
#endif
|
|
- for (bool mask : {false, true}) {
|
|
- for (float max_bias : {0.0f, 8.0f}) {
|
|
- if (!mask && max_bias > 0.0f) continue;
|
|
- for (float scale : {1.0f, 0.1f}) {
|
|
- for (int64_t ne0 : {16, 1024}) {
|
|
- for (int64_t ne1 : {16, 1024}) {
|
|
+ for (bool mask : { false, true }) {
|
|
+ for (float max_bias : { 0.0f, 8.0f }) {
|
|
+ if (!mask && max_bias > 0.0f) {
|
|
+ continue;
|
|
+ }
|
|
+ for (float scale : { 1.0f, 0.1f }) {
|
|
+ for (int64_t ne0 : { 16, 1024 }) {
|
|
+ for (int64_t ne1 : { 16, 1024 }) {
|
|
if (mask) {
|
|
- for (ggml_type m_prec : {GGML_TYPE_F32, GGML_TYPE_F16}) {
|
|
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, m_prec, scale, max_bias));
|
|
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, m_prec, scale, max_bias));
|
|
+ for (ggml_type m_prec : { GGML_TYPE_F32, GGML_TYPE_F16 }) {
|
|
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, { ne0, ne1, 1, 1 }, mask,
|
|
+ m_prec, scale, max_bias));
|
|
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, { ne0 - 1, ne1 - 1, 1, 1 },
|
|
+ mask, m_prec, scale, max_bias));
|
|
}
|
|
} else {
|
|
/* The precision of mask here doesn't matter as boolean mask is false */
|
|
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, GGML_TYPE_F32, scale, max_bias));
|
|
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, GGML_TYPE_F32, scale, max_bias));
|
|
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, { ne0, ne1, 1, 1 }, mask,
|
|
+ GGML_TYPE_F32, scale, max_bias));
|
|
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, { ne0 - 1, ne1 - 1, 1, 1 }, mask,
|
|
+ GGML_TYPE_F32, scale, max_bias));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 0.0f));
|
|
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 0.0f));
|
|
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, GGML_TYPE_F32, 0.1f, 0.0f));
|
|
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 0.0f));
|
|
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 0.0f));
|
|
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 8.0f));
|
|
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 8.0f));
|
|
-
|
|
- for (float max_bias : {0.0f, 8.0f}) {
|
|
- for (float scale : {1.0f, 0.1f}) {
|
|
- for (int64_t ne0 : {16, 1024}) {
|
|
- for (int64_t ne1 : {16, 1024}) {
|
|
- test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 1, 1}, scale, max_bias));
|
|
- test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, scale, max_bias));
|
|
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, { 16, 2, 32, 1 }, true, GGML_TYPE_F32, 0.1f, 0.0f));
|
|
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, { 16, 2, 32, 1 }, true, GGML_TYPE_F16, 0.1f, 0.0f));
|
|
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, { 16, 2, 32, 1 }, false, GGML_TYPE_F32, 0.1f, 0.0f));
|
|
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, { 32, 2, 32, 1 }, true, GGML_TYPE_F32, 0.1f, 0.0f));
|
|
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, { 32, 2, 32, 1 }, true, GGML_TYPE_F16, 0.1f, 0.0f));
|
|
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, { 32, 2, 32, 1 }, true, GGML_TYPE_F32, 0.1f, 8.0f));
|
|
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, { 32, 2, 32, 1 }, true, GGML_TYPE_F16, 0.1f, 8.0f));
|
|
+
|
|
+ for (float max_bias : { 0.0f, 8.0f }) {
|
|
+ for (float scale : { 1.0f, 0.1f }) {
|
|
+ for (int64_t ne0 : { 16, 1024 }) {
|
|
+ for (int64_t ne1 : { 16, 1024 }) {
|
|
+ test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, { ne0, ne1, 1, 1 }, scale, max_bias));
|
|
+ test_cases.emplace_back(
|
|
+ new test_soft_max_back(GGML_TYPE_F32, { ne0 - 1, ne1 - 1, 1, 1 }, scale, max_bias));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
- for (bool fw : {true, false}) { // fw == forward
|
|
+ for (bool fw : { true, false }) { // fw == forward
|
|
bool all = true;
|
|
|
|
for (float v : { 0, 1 }) {
|
|
for (float fs : { 1.0f, 1.4245f }) {
|
|
for (float ef : { 0.0f, 0.7465f }) {
|
|
for (float af : { 1.0f, 1.4245f }) {
|
|
- for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
|
|
- for (bool ff : {false, true}) { // freq_factors
|
|
- test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 7B
|
|
+ for (ggml_type type : { GGML_TYPE_F32, GGML_TYPE_F16 }) {
|
|
+ for (bool ff : { false, true }) { // freq_factors
|
|
+ test_cases.emplace_back(new test_rope(type, { 128, 32, 2, 1 }, 128, 0, 512, fs, ef, af,
|
|
+ ff, v, fw)); // llama 7B
|
|
|
|
if (all) {
|
|
- test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 13B
|
|
- test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 30B
|
|
- test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 65B
|
|
+ test_cases.emplace_back(new test_rope(type, { 128, 40, 2, 1 }, 128, 0, 512, fs, ef,
|
|
+ af, ff, v, fw)); // llama 13B
|
|
+ test_cases.emplace_back(new test_rope(type, { 128, 52, 2, 1 }, 128, 0, 512, fs, ef,
|
|
+ af, ff, v, fw)); // llama 30B
|
|
+ test_cases.emplace_back(new test_rope(type, { 128, 64, 2, 1 }, 128, 0, 512, fs, ef,
|
|
+ af, ff, v, fw)); // llama 65B
|
|
}
|
|
|
|
if (all) {
|
|
- test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
|
|
- test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
|
|
- test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
|
|
- test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, 2, 512, fs, ef, af, ff, v, fw)); // neox (stablelm)
|
|
- test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, 2, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
|
|
+ test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1 }, 64, 2, 512, fs, ef, af,
|
|
+ ff, v, fw)); // neox (falcon 7B)
|
|
+ test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1 }, 64, 2, 512, fs, ef,
|
|
+ af, ff, v, fw)); // neox (falcon 7B)
|
|
+ test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1 }, 64, 2, 512, fs, ef, af,
|
|
+ ff, v, fw)); // neox (falcon 40B)
|
|
+ test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1 }, 20, 2, 512, fs, ef,
|
|
+ af, ff, v, fw)); // neox (stablelm)
|
|
+ test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1 }, 32, 2, 512, fs, ef,
|
|
+ af, ff, v, fw)); // neox (phi-2)
|
|
}
|
|
|
|
if (all) {
|
|
- test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
|
|
- test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 7B)
|
|
- test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
|
|
+ test_cases.emplace_back(new test_rope(type, { 128, 12, 2, 1 }, 128,
|
|
+ GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v,
|
|
+ fw)); // rope_multi,m-rope (qwen2vl 2B)
|
|
+ test_cases.emplace_back(new test_rope(type, { 128, 28, 2, 1 }, 128,
|
|
+ GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v,
|
|
+ fw)); // rope_multi,m-rope (qwen2vl 7B)
|
|
+ test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1 }, 80,
|
|
+ GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v,
|
|
+ fw)); // rope_multi,m-rope (qwen2vl ViT)
|
|
}
|
|
|
|
- test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
|
|
+ test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1 }, 64, 2, 512, fs, ef, af,
|
|
+ ff, v, fw)); // neox (falcon 40B)
|
|
}
|
|
}
|
|
|
|
@@ -4462,29 +4421,34 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|
}
|
|
|
|
for (int v : { 0, 1, 2, 3 }) {
|
|
- for (int dim : { 0, 1, 2, 3, }) {
|
|
- test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
|
|
- test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
|
|
+ for (int dim : {
|
|
+ 0,
|
|
+ 1,
|
|
+ 2,
|
|
+ 3,
|
|
+ }) {
|
|
+ test_cases.emplace_back(new test_concat(GGML_TYPE_F32, { 11, 12, 13, 14 }, 7, dim, v));
|
|
+ test_cases.emplace_back(new test_concat(GGML_TYPE_I32, { 11, 12, 13, 14 }, 7, dim, v));
|
|
}
|
|
}
|
|
|
|
- for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
|
|
- test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
|
|
- test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
|
|
- test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
|
|
+ for (ggml_sort_order order : { GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC }) {
|
|
+ test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, { 8, 1, 1, 1 }, order));
|
|
+ test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, { 16, 10, 10, 10 }, order));
|
|
+ test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, { 60, 10, 10, 10 }, order)); // qwen
|
|
}
|
|
|
|
- for (ggml_scale_mode mode : {GGML_SCALE_MODE_NEAREST, GGML_SCALE_MODE_BILINEAR}) {
|
|
- test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode));
|
|
- test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode, true));
|
|
- test_cases.emplace_back(new test_upscale_ext(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, mode));
|
|
+ for (ggml_scale_mode mode : { GGML_SCALE_MODE_NEAREST, GGML_SCALE_MODE_BILINEAR }) {
|
|
+ test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, { 512, 512, 3, 2 }, 2, mode));
|
|
+ test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, { 512, 512, 3, 2 }, 2, mode, true));
|
|
+ test_cases.emplace_back(new test_upscale_ext(GGML_TYPE_F32, { 2, 5, 7, 11 }, { 5, 7, 11, 13 }, mode));
|
|
}
|
|
|
|
test_cases.emplace_back(new test_sum());
|
|
test_cases.emplace_back(new test_sum_rows());
|
|
test_cases.emplace_back(new test_mean());
|
|
- test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
|
|
- test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
|
|
+ test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, { 64, 64, 320, 1 }));
|
|
+ test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, { 9, 9, 1280, 1 }));
|
|
test_cases.emplace_back(new test_acc());
|
|
test_cases.emplace_back(new test_pad());
|
|
test_cases.emplace_back(new test_pad_reflect_1d());
|
|
@@ -4494,30 +4458,60 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|
|
|
for (int hsk : { 64, 80, 128, 192, 256, 576 }) {
|
|
for (int hsv : { 64, 80, 128, 192, 256, 512 }) {
|
|
- if (hsk != 192 && hsk != 576 && hsk != hsv) continue;
|
|
- if (hsk == 192 && (hsv != 128 && hsv != 192)) continue;
|
|
- if (hsk == 576 && hsv != 512) continue; // DeepSeek MLA
|
|
+ if (hsk != 192 && hsk != 576 && hsk != hsv) {
|
|
+ continue;
|
|
+ }
|
|
+ if (hsk == 192 && (hsv != 128 && hsv != 192)) {
|
|
+ continue;
|
|
+ }
|
|
+ if (hsk == 576 && hsv != 512) {
|
|
+ continue; // DeepSeek MLA
|
|
+ }
|
|
|
|
- for (bool mask : { true, false } ) {
|
|
+ for (bool mask : { true, false }) {
|
|
for (float max_bias : { 0.0f, 8.0f }) {
|
|
- if (!mask && max_bias > 0.0f) continue;
|
|
- for (float logit_softcap : {0.0f, 10.0f}) {
|
|
- if (hsk != 128 && logit_softcap != 0.0f) continue;
|
|
- for (int nh : { 4, }) {
|
|
+ if (!mask && max_bias > 0.0f) {
|
|
+ continue;
|
|
+ }
|
|
+ for (float logit_softcap : { 0.0f, 10.0f }) {
|
|
+ if (hsk != 128 && logit_softcap != 0.0f) {
|
|
+ continue;
|
|
+ }
|
|
+ for (int nh : {
|
|
+ 4,
|
|
+ }) {
|
|
for (int nr : { 1, 4, 16 }) {
|
|
- if (nr == 16 && hsk != 128) continue;
|
|
- for (int kv : { 512, 1024, }) {
|
|
- if (nr != 1 && kv != 512) continue;
|
|
- for (int nb : { 1, 3, 32, 35, }) {
|
|
- for (ggml_prec prec : {GGML_PREC_F32, GGML_PREC_DEFAULT}) {
|
|
- if (hsk != 128 && prec == GGML_PREC_DEFAULT) continue;
|
|
- for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
|
|
- test_cases.emplace_back(new test_flash_attn_ext(
|
|
- hsk, hsv, nh, nr, kv, nb, mask, max_bias, logit_softcap, prec, type_KV));
|
|
+ if (nr == 16 && hsk != 128) {
|
|
+ continue;
|
|
+ }
|
|
+ for (int kv : {
|
|
+ 512,
|
|
+ 1024,
|
|
+ }) {
|
|
+ if (nr != 1 && kv != 512) {
|
|
+ continue;
|
|
+ }
|
|
+ for (int nb : {
|
|
+ 1,
|
|
+ 3,
|
|
+ 32,
|
|
+ 35,
|
|
+ }) {
|
|
+ for (ggml_prec prec : { GGML_PREC_F32, GGML_PREC_DEFAULT }) {
|
|
+ if (hsk != 128 && prec == GGML_PREC_DEFAULT) {
|
|
+ continue;
|
|
+ }
|
|
+ for (ggml_type type_KV :
|
|
+ { GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0 }) {
|
|
+ test_cases.emplace_back(
|
|
+ new test_flash_attn_ext(hsk, hsv, nh, nr, kv, nb, mask, max_bias,
|
|
+ logit_softcap, prec, type_KV));
|
|
// run fewer test cases permuted
|
|
- if (mask == true && max_bias == 0.0f && logit_softcap == 0 && kv == 512) {
|
|
+ if (mask == true && max_bias == 0.0f && logit_softcap == 0 &&
|
|
+ kv == 512) {
|
|
test_cases.emplace_back(new test_flash_attn_ext(
|
|
- hsk, hsv, nh, nr, kv, nb, mask, max_bias, logit_softcap, prec, type_KV, {0, 2, 1, 3}));
|
|
+ hsk, hsv, nh, nr, kv, nb, mask, max_bias, logit_softcap, prec,
|
|
+ type_KV, { 0, 2, 1, 3 }));
|
|
}
|
|
}
|
|
}
|
|
@@ -4531,12 +4525,12 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|
}
|
|
}
|
|
|
|
- test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, { 10, 5, 4, 3}));
|
|
- test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, {30000, 1, 1, 1}));
|
|
- test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, { 10, 5, 4, 3}));
|
|
- test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, {30000, 1, 1, 1}));
|
|
+ test_cases.emplace_back(new test_cross_entropy_loss(GGML_TYPE_F32, { 10, 5, 4, 3 }));
|
|
+ test_cases.emplace_back(new test_cross_entropy_loss(GGML_TYPE_F32, { 30000, 1, 1, 1 }));
|
|
+ test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, { 10, 5, 4, 3 }));
|
|
+ test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, { 30000, 1, 1, 1 }));
|
|
|
|
- test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
|
|
+ test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, { 10, 5, 4, 3 }));
|
|
|
|
// these tests are disabled to save execution time, but they can be handy for debugging
|
|
#if 0
|
|
@@ -4553,58 +4547,77 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|
static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
|
|
std::vector<std::unique_ptr<test_case>> test_cases;
|
|
|
|
- test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
|
|
- test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
|
|
+ test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, { 4096, 1, 1, 1 }, { 1, 1, 1, 1 }));
|
|
+ test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, { 4096, 1, 1, 1 }, { 1, 512, 1, 1 }));
|
|
|
|
- test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
|
|
- test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
|
|
- test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
|
|
+ test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, { 512, 3072, 1, 1 }));
|
|
+ test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, { 8192, 512, 2, 1 }, { 0, 2, 1, 3 }));
|
|
+ test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, { 3072, 512, 2, 1 }, { 0, 2, 1, 3 }));
|
|
|
|
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
|
|
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
|
|
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
|
|
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
|
|
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
|
|
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
|
|
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
|
|
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, { 4096, 4096, 5, 1 }, false, GGML_TYPE_F32, 1.0f, 0.0f));
|
|
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, { 77, 4096, 5, 1 }, false, GGML_TYPE_F32, 1.0f, 0.0f));
|
|
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, { 1024, 1024, 10, 1 }, false, GGML_TYPE_F32, 1.0f, 0.0f));
|
|
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, { 77, 1024, 10, 1 }, false, GGML_TYPE_F32, 1.0f, 0.0f));
|
|
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, { 256, 256, 20, 1 }, false, GGML_TYPE_F32, 1.0f, 0.0f));
|
|
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, { 64, 64, 20, 1 }, false, GGML_TYPE_F32, 1.0f, 0.0f));
|
|
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, { 77, 64, 20, 1 }, false, GGML_TYPE_F32, 1.0f, 0.0f));
|
|
|
|
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
|
|
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
|
|
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
|
|
+ test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, { 32, 10, 1, 1 }));
|
|
+ test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, { 1024, 10, 1, 1 }));
|
|
+ test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, { 32000, 512, 1, 1 }));
|
|
|
|
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16416, 1, 128, {8, 1}, {4, 1}, {0, 2, 1, 3}));
|
|
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 1, 16416, {8, 1}, {4, 1}, {0, 1, 2, 3}, true));
|
|
+ test_cases.emplace_back(
|
|
+ new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16416, 1, 128, { 8, 1 }, { 4, 1 }, { 0, 2, 1, 3 }));
|
|
+ test_cases.emplace_back(
|
|
+ new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 1, 16416, { 8, 1 }, { 4, 1 }, { 0, 1, 2, 3 }, true));
|
|
|
|
- for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
|
|
+ for (int bs : { 1, 2, 3, 4, 5, 8, 512 }) {
|
|
for (ggml_type type_a : all_types) {
|
|
- for (ggml_type type_b : {GGML_TYPE_F32}) {
|
|
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1}));
|
|
+ for (ggml_type type_b : { GGML_TYPE_F32 }) {
|
|
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, { 1, 1 }, { 1, 1 }));
|
|
}
|
|
}
|
|
}
|
|
|
|
- for (int K : {3, 5}) {
|
|
- for (int IC : {256, 2560}) {
|
|
- for (int IW_IH : {32, 64, 256}) {
|
|
+ for (int K : { 3, 5 }) {
|
|
+ for (int IC : { 256, 2560 }) {
|
|
+ for (int IW_IH : { 32, 64, 256 }) {
|
|
if (IC == 2560 && IW_IH == 256) {
|
|
// too big
|
|
continue;
|
|
}
|
|
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true));
|
|
+ test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32,
|
|
+ { IW_IH, IW_IH, IC, 1 }, { K, K, IC, 1 }, 1, 1, 1, 1, 1, 1,
|
|
+ true));
|
|
}
|
|
}
|
|
}
|
|
|
|
- for (int kv : { 4096, 8192, 16384, }) {
|
|
- for (int hs : { 64, 128, }) {
|
|
- for (int nr : { 1, 4, }) {
|
|
- test_cases.emplace_back(new test_flash_attn_ext(hs, hs, 8, nr, kv, 1, true, 0, 0, GGML_PREC_F32, GGML_TYPE_F16));
|
|
+ for (int kv : {
|
|
+ 4096,
|
|
+ 8192,
|
|
+ 16384,
|
|
+ }) {
|
|
+ for (int hs : {
|
|
+ 64,
|
|
+ 128,
|
|
+ }) {
|
|
+ for (int nr : {
|
|
+ 1,
|
|
+ 4,
|
|
+ }) {
|
|
+ test_cases.emplace_back(
|
|
+ new test_flash_attn_ext(hs, hs, 8, nr, kv, 1, true, 0, 0, GGML_PREC_F32, GGML_TYPE_F16));
|
|
}
|
|
}
|
|
}
|
|
|
|
- test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, false));
|
|
- test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, true));
|
|
+ test_cases.emplace_back(new test_conv_2d_dw({ 512, 512, 256, 1 }, { 3, 3, 1, 256 }, 1, 1, 1, false));
|
|
+ test_cases.emplace_back(new test_conv_2d_dw({ 512, 512, 256, 1 }, { 3, 3, 1, 256 }, 1, 1, 1, true));
|
|
+
|
|
+ test_cases.emplace_back(new test_conv_transpose_2d({ 256, 256, 256, 1 }, { 3, 3, 16, 256 }, 1));
|
|
+
|
|
+ test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 256, 256, 3, 1 }));
|
|
|
|
return test_cases;
|
|
}
|
|
@@ -4685,10 +4698,10 @@ static void usage(char ** argv) {
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
- test_mode mode = MODE_TEST;
|
|
+ test_mode mode = MODE_TEST;
|
|
const char * op_name_filter = nullptr;
|
|
const char * backend_filter = nullptr;
|
|
- const char * params_filter = nullptr;
|
|
+ const char * params_filter = nullptr;
|
|
|
|
for (int i = 1; i < argc; i++) {
|
|
if (strcmp(argv[i], "test") == 0) {
|
|
@@ -4752,14 +4765,15 @@ int main(int argc, char ** argv) {
|
|
GGML_ASSERT(backend != NULL);
|
|
|
|
ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
|
|
- auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
|
|
+ auto ggml_backend_set_n_threads_fn =
|
|
+ (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
|
|
if (ggml_backend_set_n_threads_fn) {
|
|
// TODO: better value for n_threads
|
|
ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency());
|
|
}
|
|
|
|
printf(" Device description: %s\n", ggml_backend_dev_description(dev));
|
|
- size_t free, total; // NOLINT
|
|
+ size_t free, total; // NOLINT
|
|
ggml_backend_dev_memory(dev, &free, &total);
|
|
printf(" Device memory: %zu MB (%zu MB free)\n", total / 1024 / 1024, free / 1024 / 1024);
|
|
printf("\n");
|