Files
ollama/model/models/mistral3/model_vision.go
Jesse Gross 1f371ea92f ml: Panic rather than return error on tensor allocation failure
FromFloatSlice and FromIntSlice return an error if the shape doesn't
match the passed data or if memory can't be allocated. Since these
are inputs, the memory being allocated is system memory rather than VRAM.

In many cases, the caller can't really handle the error and panics.

Empty and Zeros directly panic if they can't allocate memory.

This makes things consistent by panicing for the first two cases,
removing a fair amount of error handling code. This is also consistent
with how Go typically handles these situations.
2025-05-22 14:38:09 -07:00

177 lines
6.4 KiB
Go

package mistral3
import (
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
)
var batchSize int = 1
func rotateHalf(ctx ml.Context, t ml.Tensor) ml.Tensor {
x1 := t.View(ctx, 0, t.Dim(0)/2, t.Stride(1), t.Dim(1), t.Stride(2), t.Dim(2), t.Stride(3), t.Dim(3))
x2 := t.View(ctx, t.Stride(0)*t.Dim(0)/2, t.Dim(0)/2, t.Stride(1), t.Dim(1), t.Stride(2), t.Dim(2), t.Stride(3), t.Dim(3)).Contiguous(ctx)
return x2.Neg(ctx).Concat(ctx, x1, 0)
}
func applyRotaryPositionalEmbedding(ctx ml.Context, t, cos, sin ml.Tensor) ml.Tensor {
return t.Mul(ctx, cos).Add(ctx, rotateHalf(ctx, t).Mul(ctx, sin))
}
type VisionSelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenStates, cos, sin ml.Tensor, opts *VisionModelOptions) ml.Tensor {
query := sa.Query.Forward(ctx, hiddenStates)
key := sa.Key.Forward(ctx, hiddenStates)
value := sa.Value.Forward(ctx, hiddenStates)
query = query.Reshape(ctx, opts.headDim, opts.numHeads, query.Dim(1), batchSize)
key = key.Reshape(ctx, opts.headDim, opts.numHeads, key.Dim(1), batchSize)
value = value.Reshape(ctx, opts.headDim, opts.numHeads, value.Dim(1), batchSize)
query = applyRotaryPositionalEmbedding(ctx, query, cos, sin)
key = applyRotaryPositionalEmbedding(ctx, key, cos, sin)
attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(opts.headDim)), nil)
attention = attention.Reshape(ctx, opts.hiddenSize, attention.Dim(2), batchSize)
return sa.Output.Forward(ctx, attention)
}
type VisionMLP struct {
Gate *nn.Linear `gguf:"ffn_gate"`
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
}
func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *VisionModelOptions) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
type VisionEncoderLayer struct {
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
SelfAttention *VisionSelfAttention
FFNNorm *nn.RMSNorm `gguf:"ffn_norm"`
MLP *VisionMLP
}
func (e *VisionEncoderLayer) Forward(ctx ml.Context, hiddenStates, cos, sin ml.Tensor, opts *VisionModelOptions) ml.Tensor {
residual := hiddenStates
hiddenStates = e.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = e.SelfAttention.Forward(ctx, hiddenStates, cos, sin, opts)
hiddenStates = hiddenStates.Add(ctx, residual)
residual = hiddenStates
hiddenStates = e.FFNNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = e.MLP.Forward(ctx, hiddenStates, opts)
return hiddenStates.Add(ctx, residual)
}
type VisionModelOptions struct {
hiddenSize int
numHeads int
headDim int
intermediateSize int
imageSize int
patchSize int
numChannels int
eps float32
ropeBase float32
}
type VisionModel struct {
PatchEmbedding *nn.Conv2D `gguf:"patch_conv"`
EncoderNorm *nn.RMSNorm `gguf:"encoder_norm"`
Layers []VisionEncoderLayer `gguf:"blk"`
*VisionModelOptions
}
func (m *VisionModel) positionalEmbedding(ctx ml.Context, positionIDs ml.Tensor) ml.Tensor {
maxPatchesPerSide := m.imageSize / m.patchSize
frequencies := m.headDim / 2
frequenciesHeight := make([]float32, frequencies/2*maxPatchesPerSide)
frequenciesWidth := make([]float32, frequencies/2*maxPatchesPerSide)
for i := range frequencies {
for j := range maxPatchesPerSide {
frequency := float32(j) / float32(math.Pow(float64(m.ropeBase), float64(i)*2/float64(m.headDim)))
if i%2 == 0 {
frequenciesHeight[i/2*maxPatchesPerSide+j] = frequency
} else {
frequenciesWidth[i/2*maxPatchesPerSide+j] = frequency
}
}
}
h := ctx.Input().FromFloatSlice(frequenciesHeight, maxPatchesPerSide, frequencies/2)
w := ctx.Input().FromFloatSlice(frequenciesWidth, maxPatchesPerSide, frequencies/2)
h = h.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
w = w.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
h = h.Repeat(ctx, 1, maxPatchesPerSide)
h = h.Reshape(ctx, frequencies/2, maxPatchesPerSide, maxPatchesPerSide).Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
w = w.Repeat(ctx, 2, maxPatchesPerSide)
inverseFrequencies := h.Concat(ctx, w, 0).Reshape(ctx, frequencies, maxPatchesPerSide*maxPatchesPerSide)
inverseFrequencies = inverseFrequencies.Concat(ctx, inverseFrequencies, 0)
return inverseFrequencies.Rows(ctx, positionIDs)
}
func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor) ml.Tensor {
numPatchesW := pixelValues.Dim(0) / m.patchSize
numPatchesH := pixelValues.Dim(1) / m.patchSize
numPatches := numPatchesW * numPatchesH
hiddenStates := m.PatchEmbedding.Forward(ctx, pixelValues, m.patchSize, m.patchSize, 0, 0, 1, 1)
hiddenStates = hiddenStates.Reshape(ctx, numPatches, m.hiddenSize)
hiddenStates = hiddenStates.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
hiddenStates = m.EncoderNorm.Forward(ctx, hiddenStates, m.VisionModelOptions.eps)
// Prepare position IDs for 2D rope
positions := make([]int32, numPatches)
for h := range numPatchesH {
for w := range numPatchesW {
idx := h*numPatchesW + w
positions[idx] = int32(h*m.imageSize/m.patchSize + w)
}
}
positionIDs := ctx.Input().FromIntSlice(positions, len(positions))
positionEmbedding := m.positionalEmbedding(ctx, positionIDs)
cos, sin := positionEmbedding.Cos(ctx), positionEmbedding.Sin(ctx)
cos = cos.Reshape(ctx, cos.Dim(0), 1, cos.Dim(1))
sin = sin.Reshape(ctx, sin.Dim(0), 1, sin.Dim(1))
for _, layer := range m.Layers {
hiddenStates = layer.Forward(ctx, hiddenStates, cos, sin, m.VisionModelOptions)
}
return hiddenStates
}
func newVisionModel(c fs.Config) *VisionModel {
return &VisionModel{
Layers: make([]VisionEncoderLayer, c.Uint("vision.block_count")),
VisionModelOptions: &VisionModelOptions{
hiddenSize: int(c.Uint("vision.embedding_length", 1024)),
numHeads: int(c.Uint("vision.attention.head_count", 16)),
headDim: int(c.Uint("vision.attention.key_length", 64)),
intermediateSize: int(c.Uint("vision.feed_forward_length", 4096)),
imageSize: int(c.Uint("vision.image_size", 1540)),
patchSize: int(c.Uint("vision.patch_size", 14)),
numChannels: int(c.Uint("vision.num_channels", 3)),
eps: c.Float("vision.attention.layer_norm_epsilon", 1e-5),
ropeBase: c.Float("vision.rope.freq_base", 10000.0),
},
}
}