mirror of
https://github.com/ollama/ollama.git
synced 2025-07-29 16:03:22 +02:00
FromFloatSlice and FromIntSlice return an error if the shape doesn't match the passed data or if memory can't be allocated. Since these are inputs, the memory being allocated is system memory rather than VRAM. In many cases, the caller can't really handle the error and panics. Empty and Zeros directly panic if they can't allocate memory. This makes things consistent by panicing for the first two cases, removing a fair amount of error handling code. This is also consistent with how Go typically handles these situations.
119 lines
3.4 KiB
Go
119 lines
3.4 KiB
Go
package mllama
|
|
|
|
import (
|
|
"bytes"
|
|
"image"
|
|
"slices"
|
|
|
|
"github.com/ollama/ollama/fs"
|
|
"github.com/ollama/ollama/kvcache"
|
|
"github.com/ollama/ollama/ml"
|
|
"github.com/ollama/ollama/ml/nn"
|
|
"github.com/ollama/ollama/model"
|
|
"github.com/ollama/ollama/model/input"
|
|
)
|
|
|
|
type Model struct {
|
|
model.Base
|
|
model.BytePairEncoding
|
|
|
|
*VisionModel `gguf:"v,vision"`
|
|
*TextModel
|
|
|
|
Projector *nn.Linear `gguf:"mm.0"`
|
|
|
|
ImageProcessor
|
|
}
|
|
|
|
const (
|
|
crossAttentionLayer = iota
|
|
selfAttentionLayer
|
|
)
|
|
|
|
func New(c fs.Config) (model.Model, error) {
|
|
m := Model{
|
|
BytePairEncoding: model.NewBytePairEncoding(
|
|
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
|
|
&model.Vocabulary{
|
|
Values: c.Strings("tokenizer.ggml.tokens"),
|
|
Types: c.Ints("tokenizer.ggml.token_type"),
|
|
Merges: c.Strings("tokenizer.ggml.merges"),
|
|
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
|
|
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
|
|
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
|
|
EOS: append(
|
|
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
|
|
c.Ints("tokenizer.ggml.eos_token_ids")...,
|
|
),
|
|
},
|
|
),
|
|
ImageProcessor: newImageProcessor(c),
|
|
VisionModel: newVisionModel(c),
|
|
TextModel: newTextModel(c),
|
|
}
|
|
|
|
encoderCache := kvcache.NewEncoderCache()
|
|
encoderCache.SetConfig(ml.CacheConfig{})
|
|
m.Cache = kvcache.NewWrapperCache(encoderCache, kvcache.NewCausalCache(m.TextModel.Shift))
|
|
|
|
return &m, nil
|
|
}
|
|
|
|
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input.Multimodal, error) {
|
|
if len(m.VisionModel.Transformer.Layers) == 0 || len(m.GlobalTransformer.Layers) == 0 {
|
|
return nil, model.ErrNoVisionModel
|
|
}
|
|
|
|
image, _, err := image.Decode(bytes.NewReader(multimodalData))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
f32s, ratio, err := m.ImageProcessor.ProcessImage(image)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if ratio.numTiles() < m.maxNumTiles {
|
|
// Pad tiles to maxNumTiles
|
|
f32s = slices.Grow(f32s, m.imageSize*m.imageSize*m.numChannels*m.maxNumTiles)
|
|
f32s = f32s[:m.imageSize*m.imageSize*m.numChannels*m.maxNumTiles]
|
|
}
|
|
|
|
pixelValues := ctx.Input().FromFloatSlice(f32s, m.imageSize, m.imageSize, m.numChannels, m.maxNumTiles)
|
|
aspectRatio := ctx.Input().FromIntSlice([]int32{int32(ratio.rank)}, 1)
|
|
|
|
positionIDs := ctx.Arange(0, 1601, 1, ml.DTypeI32)
|
|
crossAttentionStates := m.VisionModel.Forward(ctx, pixelValues, positionIDs, aspectRatio)
|
|
projectedOutputs := m.Projector.Forward(ctx, crossAttentionStates)
|
|
|
|
return []input.Multimodal{{Tensor: projectedOutputs}}, nil
|
|
}
|
|
|
|
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
|
|
for i := range inputs {
|
|
if inputs[i].Multimodal != nil {
|
|
inputs[i].Token = 128256 // <|image|>
|
|
}
|
|
}
|
|
|
|
return inputs, nil
|
|
}
|
|
|
|
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
|
var crossAttentionStates ml.Tensor
|
|
if len(batch.Multimodal) > 0 {
|
|
crossAttentionStates = batch.Multimodal[len(batch.Multimodal)-1].Multimodal[0].Tensor
|
|
}
|
|
|
|
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
|
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
|
|
|
|
// TODO: attention mask, cross attention mask
|
|
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache)), nil
|
|
}
|
|
|
|
func init() {
|
|
model.Register("mllama", New)
|
|
}
|