mirror of
https://github.com/ollama/ollama.git
synced 2025-08-02 19:34:49 +02:00
* Only load supported models on new engine Verify the model is supported before trying to load * int: testcase for all library models
175 lines
5.6 KiB
Go
175 lines
5.6 KiB
Go
package qwen2
|
|
|
|
import (
|
|
"cmp"
|
|
"fmt"
|
|
"math"
|
|
"strings"
|
|
|
|
"github.com/ollama/ollama/fs"
|
|
"github.com/ollama/ollama/kvcache"
|
|
"github.com/ollama/ollama/ml"
|
|
"github.com/ollama/ollama/ml/nn"
|
|
"github.com/ollama/ollama/ml/nn/fast"
|
|
"github.com/ollama/ollama/ml/nn/rope"
|
|
"github.com/ollama/ollama/model"
|
|
"github.com/ollama/ollama/model/input"
|
|
)
|
|
|
|
type Options struct {
|
|
hiddenSize, numHeads, numKVHeads int
|
|
headDim, ropeDim int
|
|
eps, ropeBase, ropeScale float32
|
|
}
|
|
|
|
type Attention struct {
|
|
Query *nn.Linear `gguf:"attn_q"`
|
|
Key *nn.Linear `gguf:"attn_k"`
|
|
Value *nn.Linear `gguf:"attn_v"`
|
|
Output *nn.Linear `gguf:"attn_output"`
|
|
}
|
|
|
|
func (attn Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
|
batchSize := hiddenStates.Dim(1)
|
|
headDim := cmp.Or(opts.headDim, opts.hiddenSize/opts.numHeads)
|
|
ropeDim := cmp.Or(opts.ropeDim, headDim)
|
|
|
|
query := attn.Query.Forward(ctx, hiddenStates)
|
|
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
|
|
|
key := attn.Key.Forward(ctx, hiddenStates)
|
|
key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
|
|
|
value := attn.Value.Forward(ctx, hiddenStates)
|
|
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
|
|
|
query = fast.RoPE(ctx, query, positions, ropeDim, opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
|
|
key = fast.RoPE(ctx, key, positions, ropeDim, opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
|
|
|
|
attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(headDim)), cache)
|
|
attention = attention.Reshape(ctx, headDim*opts.numHeads, batchSize)
|
|
|
|
return attn.Output.Forward(ctx, attention)
|
|
}
|
|
|
|
type MLP struct {
|
|
Gate *nn.Linear `gguf:"ffn_gate"`
|
|
Up *nn.Linear `gguf:"ffn_up"`
|
|
Down *nn.Linear `gguf:"ffn_down"`
|
|
}
|
|
|
|
func (mlp MLP) Forward(ctx ml.Context, hiddenStates ml.Tensor) ml.Tensor {
|
|
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
|
|
return mlp.Down.Forward(ctx, hiddenStates)
|
|
}
|
|
|
|
type DecoderLayer struct {
|
|
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
|
|
Attention *Attention
|
|
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
|
|
MLP *MLP
|
|
}
|
|
|
|
func (d DecoderLayer) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
|
residual := hiddenStates
|
|
|
|
hiddenStates = d.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
|
|
hiddenStates = d.Attention.Forward(ctx, hiddenStates, positions, cache, opts)
|
|
if outputs != nil {
|
|
hiddenStates = hiddenStates.Rows(ctx, outputs)
|
|
residual = residual.Rows(ctx, outputs)
|
|
}
|
|
|
|
hiddenStates = hiddenStates.Add(ctx, residual)
|
|
residual = hiddenStates
|
|
|
|
hiddenStates = d.MLPNorm.Forward(ctx, hiddenStates, opts.eps)
|
|
hiddenStates = d.MLP.Forward(ctx, hiddenStates)
|
|
return hiddenStates.Add(ctx, residual)
|
|
}
|
|
|
|
type Model struct {
|
|
model.Base
|
|
model.BytePairEncoding
|
|
|
|
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
|
|
Layers []DecoderLayer `gguf:"blk"`
|
|
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
|
|
Output *nn.Linear `gguf:"output,alt:token_embd"`
|
|
|
|
Options
|
|
}
|
|
|
|
// Forward implements model.Model.
|
|
func (m Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
|
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
|
|
|
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
|
|
|
|
for i, layer := range m.Layers {
|
|
m.Cache.SetLayer(i)
|
|
|
|
var outputs ml.Tensor
|
|
if i == len(m.Layers)-1 {
|
|
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
|
|
}
|
|
|
|
hiddenStates = layer.Forward(ctx, hiddenStates, positions, outputs, m.Cache, &m.Options)
|
|
}
|
|
|
|
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
|
|
hiddenStates = m.Output.Forward(ctx, hiddenStates)
|
|
return hiddenStates, nil
|
|
}
|
|
|
|
func (m Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
|
ropeDim := cmp.Or(m.ropeDim, m.hiddenSize/m.numHeads)
|
|
return fast.RoPE(ctx, key, shift, ropeDim, m.ropeBase, m.ropeScale, rope.WithTypeNeoX()), nil
|
|
}
|
|
|
|
func New(c fs.Config) (model.Model, error) {
|
|
// This model currently only supports the gpt2 tokenizer
|
|
if c.String("tokenizer.ggml.model") == "llama" {
|
|
return nil, fmt.Errorf("unsupported tokenizer: llama")
|
|
}
|
|
// detect library/qwen model(s) which are incompatible
|
|
if strings.HasPrefix(c.String("general.name"), "Qwen2-beta") {
|
|
return nil, fmt.Errorf("unsupported model: %s", c.String("general.name"))
|
|
}
|
|
m := Model{
|
|
Layers: make([]DecoderLayer, c.Uint("block_count")),
|
|
BytePairEncoding: model.NewBytePairEncoding(
|
|
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
|
|
&model.Vocabulary{
|
|
Values: c.Strings("tokenizer.ggml.tokens"),
|
|
Types: c.Ints("tokenizer.ggml.token_type"),
|
|
Merges: c.Strings("tokenizer.ggml.merges"),
|
|
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
|
|
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
|
|
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
|
|
EOS: append(
|
|
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
|
|
c.Ints("tokenizer.ggml.eos_token_ids")...,
|
|
),
|
|
},
|
|
),
|
|
Options: Options{
|
|
hiddenSize: int(c.Uint("embedding_length")),
|
|
numHeads: int(c.Uint("attention.head_count")),
|
|
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
|
headDim: int(c.Uint("attention.key_length")),
|
|
ropeDim: int(c.Uint("rope.dimension_count")),
|
|
ropeBase: c.Float("rope.freq_base"),
|
|
ropeScale: c.Float("rope.freq_scale", 1),
|
|
eps: c.Float("attention.layer_norm_rms_epsilon"),
|
|
},
|
|
}
|
|
|
|
m.Cache = kvcache.NewCausalCache(m.Shift)
|
|
return &m, nil
|
|
}
|
|
|
|
func init() {
|
|
model.Register("qwen2", New)
|
|
}
|