ollama/model/bert/model.go
Michael Yang 760e8fa656 tmp
2025-02-11 22:34:09 -08:00

186 lines
5.2 KiB
Go

package bert
import (
"math"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
)
func init() {
model.Register("bert", New)
}
type PoolingType int
const (
PoolingTypeNone PoolingType = iota
PoolingTypeMean
PoolingTypeCLS
PoolingTypeLast
PoolingTypeRank
)
type Options struct {
hiddenSize, numHeads int64
eps float32
poolingType PoolingType
}
type Model struct {
model.Base
model.BytePairEncoding
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
TypeEmbedding *nn.Embedding `gguf:"type_embd,alt:token_types"`
PositionEmbedding *nn.Embedding `gguf:"position_embd"`
TokenEmbeddingNorm *nn.LayerNorm `gguf:"token_embd_norm"`
Layers []EncoderLayer `gguf:"blk"`
*Options
}
// Forward implements model.Model.
func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
inputs, err := ctx.FromIntSlice(opts.Inputs(), len(opts.Inputs()))
if err != nil {
return nil, err
}
types, err := ctx.FromIntSlice([]int32{0}, 1)
if err != nil {
return nil, err
}
positions, err := ctx.FromIntSlice(opts.Positions(), len(opts.Positions()))
if err != nil {
return nil, err
}
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
hiddenState = hiddenState.Add(ctx, m.TypeEmbedding.Forward(ctx, types))
hiddenState = hiddenState.Add(ctx, m.PositionEmbedding.Forward(ctx, positions))
hiddenState = m.TokenEmbeddingNorm.Forward(ctx, hiddenState, m.eps)
for i, layer := range m.Layers {
hiddenState = layer.Forward(ctx, hiddenState, positions, opts.Cache.Sub(i), m.Options)
}
switch m.poolingType {
case PoolingTypeMean:
sum := func(s []int32) (sum int32) {
for _, v := range s {
sum += v
}
return
}
// TODO: handle batch
f32s := make([]float32, len(opts.Positions())*len(opts.Positions()))
for i := range opts.Positions() {
f32s[i] = 1 / float32(sum(opts.Positions()))
}
means, err := ctx.FromFloatSlice(f32s, len(opts.Positions()), len(opts.Positions()))
if err != nil {
return nil, err
}
hiddenState = hiddenState.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
hiddenState = hiddenState.Mulmat(ctx, means)
}
return hiddenState, nil
}
type EncoderLayer struct {
*SelfAttention
MLPNorm *nn.LayerNorm `gguf:"attn_output_norm"`
*MLP
LayerOutputNorm *nn.LayerNorm `gguf:"layer_output_norm"`
}
func (e *EncoderLayer) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache model.Cache, opts *Options) ml.Tensor {
residual := hiddenState
hiddenState = e.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
hiddenState = hiddenState.Add(ctx, residual)
hiddenState = e.MLPNorm.Forward(ctx, hiddenState, opts.eps)
residual = hiddenState
hiddenState = e.MLP.Forward(ctx, hiddenState, opts)
hiddenState = hiddenState.Add(ctx, residual)
return e.LayerOutputNorm.Forward(ctx, hiddenState, opts.eps)
}
type SelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache model.Cache, opts *Options) ml.Tensor {
batchSize := hiddenState.Dim(1)
headDim := opts.hiddenSize / opts.numHeads
query := sa.Query.Forward(ctx, hiddenState)
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
key := sa.Key.Forward(ctx, hiddenState)
key = key.Reshape(ctx, headDim, opts.numHeads, batchSize)
value := sa.Value.Forward(ctx, hiddenState)
value = value.Reshape(ctx, headDim, opts.numHeads, batchSize)
key, value = cache.Put(ctx, key, value, cache.Options)
query = query.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
key = key.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
scores := key.Mulmat(ctx, query)
scores = scores.Scale(ctx, 1.0/math.Sqrt(float64(headDim)))
scores = scores.Softmax(ctx)
attention := value.Mulmat(ctx, scores)
attention = attention.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)
return sa.Output.Forward(ctx, attention)
}
type MLP struct {
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
}
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
return mlp.Down.Forward(ctx, mlp.Up.Forward(ctx, hiddenState).GELU(ctx))
}
func New(c ml.Config) (model.Model, error) {
return &Model{
Layers: make([]EncoderLayer, c.Uint("block_count")),
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Uints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
BOS: c.Uint("tokenizer.ggml.bos_token_id"),
EOS: c.Uint("tokenizer.ggml.eos_token_id"),
},
),
Options: &Options{
hiddenSize: int64(c.Uint("embedding_length")),
numHeads: int64(c.Uint("attention.head_count")),
eps: c.Float("attention.layer_norm_epsilon"),
poolingType: PoolingType(c.Uint("pooling_type")),
},
}, nil
}