mirror of
https://github.com/ollama/ollama.git
synced 2025-04-23 23:10:41 +02:00
153 lines
4.4 KiB
Go
153 lines
4.4 KiB
Go
package llama
|
|
|
|
import (
|
|
"log/slog"
|
|
"math"
|
|
|
|
"github.com/ollama/ollama/ml"
|
|
"github.com/ollama/ollama/ml/nn"
|
|
"github.com/ollama/ollama/model"
|
|
)
|
|
|
|
type Options struct {
|
|
RopeFactors ml.Tensor `ggml:"rope_freqs.weight"`
|
|
hiddenSize, numHeads, numKVHeads int64
|
|
eps, ropeBase, ropeScale float32
|
|
ropeDim uint32
|
|
}
|
|
|
|
type Model struct {
|
|
model.Base
|
|
|
|
TextProcessor
|
|
|
|
TokenEmbedding *nn.Embedding `ggml:"token_embd"`
|
|
Layers []Layer `ggml:"blk"`
|
|
OutputNorm *nn.RMSNorm `ggml:"output_norm"`
|
|
Output *nn.Linear `ggml:"output"`
|
|
|
|
*Options
|
|
}
|
|
|
|
func New(c ml.Config) (model.Model, error) {
|
|
return &Model{
|
|
TextProcessor: newTextProcessor(c),
|
|
Layers: make([]Layer, c.Uint("block_count")),
|
|
Options: &Options{
|
|
hiddenSize: int64(c.Uint("embedding_length")),
|
|
numHeads: int64(c.Uint("attention.head_count")),
|
|
numKVHeads: int64(c.Uint("attention.head_count_kv")),
|
|
eps: c.Float("attention.layer_norm_rms_epsilon"),
|
|
ropeBase: c.Float("rope.freq_base"),
|
|
ropeScale: c.Float("rope.freq_scale", 1),
|
|
ropeDim: c.Uint("rope.dimension_count"),
|
|
},
|
|
}, nil
|
|
}
|
|
|
|
type SelfAttention struct {
|
|
Query *nn.Linear `ggml:"attn_q"`
|
|
Key *nn.Linear `ggml:"attn_k"`
|
|
Value *nn.Linear `ggml:"attn_v"`
|
|
Output *nn.Linear `ggml:"attn_output"`
|
|
}
|
|
|
|
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache model.Cache, opts *Options) ml.Tensor {
|
|
batchSize := hiddenState.Dim(0)
|
|
headDim := opts.hiddenSize / opts.numHeads
|
|
|
|
q := sa.Query.Forward(ctx, hiddenState)
|
|
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
|
// q = q.Rope(ctx, positionIDs, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
|
|
|
|
k := sa.Key.Forward(ctx, hiddenState)
|
|
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
|
// k = k.Rope(ctx, positionIDs, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
|
|
|
|
v := sa.Value.Forward(ctx, hiddenState)
|
|
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
|
|
|
k, v = cache.Put(ctx, k, v, cache.Options)
|
|
|
|
q = q.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
|
k = k.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
|
v = v.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
|
|
|
|
slog.Info("self attention", "q", q, "k", k, "v", v)
|
|
|
|
kq := k.Mulmat(ctx, q)
|
|
kq = kq.Scale(ctx, 1.0/math.Sqrt(float64(headDim)))
|
|
kq = kq.Softmax(ctx)
|
|
|
|
kqv := v.Mulmat(ctx, kq)
|
|
kqv = kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
|
kqv = kqv.Reshape(ctx, opts.hiddenSize, batchSize)
|
|
|
|
return sa.Output.Forward(ctx, kqv)
|
|
}
|
|
|
|
type MLP struct {
|
|
Up *nn.Linear `ggml:"ffn_up"`
|
|
Down *nn.Linear `ggml:"ffn_down"`
|
|
Gate *nn.Linear `ggml:"ffn_gate"`
|
|
}
|
|
|
|
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
|
|
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
|
|
return mlp.Down.Forward(ctx, hiddenState)
|
|
}
|
|
|
|
type Layer struct {
|
|
AttentionNorm *nn.RMSNorm `ggml:"attn_norm"`
|
|
SelfAttention *SelfAttention
|
|
MLPNorm *nn.RMSNorm `ggml:"ffn_norm"`
|
|
MLP *MLP
|
|
}
|
|
|
|
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache model.Cache, opts *Options) ml.Tensor {
|
|
residual := hiddenState
|
|
|
|
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
|
|
hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
|
|
hiddenState = hiddenState.Add(ctx, residual)
|
|
residual = hiddenState
|
|
|
|
hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
|
|
hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
|
|
return hiddenState.Add(ctx, residual)
|
|
}
|
|
|
|
func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
|
|
inputs, err := ctx.FromIntSlice(opts.Inputs(), len(opts.Inputs()))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
positions, err := ctx.FromIntSlice(opts.Positions(), len(opts.Positions()))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
|
|
|
|
slog.Info("breakpoint", "inputs", inputs, "positions", positions, "hiddenState", hiddenState)
|
|
|
|
for i, layer := range m.Layers {
|
|
hiddenState = layer.Forward(ctx, hiddenState, positions, opts.Cache.Sub(i), m.Options)
|
|
}
|
|
|
|
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
|
|
hiddenState = m.Output.Forward(ctx, hiddenState)
|
|
|
|
outputs, err := ctx.FromIntSlice([]int32{int32(len(opts.Positions())) - 1}, 1)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return hiddenState.Rows(ctx, outputs), nil
|
|
}
|
|
|
|
func init() {
|
|
model.Register("llama", New)
|
|
}
|