ollama/model/llama/model.go
2024-12-31 11:13:09 -08:00

153 lines
4.4 KiB
Go

package llama
import (
"log/slog"
"math"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
)
type Options struct {
RopeFactors ml.Tensor `ggml:"rope_freqs.weight"`
hiddenSize, numHeads, numKVHeads int64
eps, ropeBase, ropeScale float32
ropeDim uint32
}
type Model struct {
model.Base
TextProcessor
TokenEmbedding *nn.Embedding `ggml:"token_embd"`
Layers []Layer `ggml:"blk"`
OutputNorm *nn.RMSNorm `ggml:"output_norm"`
Output *nn.Linear `ggml:"output"`
*Options
}
func New(c ml.Config) (model.Model, error) {
return &Model{
TextProcessor: newTextProcessor(c),
Layers: make([]Layer, c.Uint("block_count")),
Options: &Options{
hiddenSize: int64(c.Uint("embedding_length")),
numHeads: int64(c.Uint("attention.head_count")),
numKVHeads: int64(c.Uint("attention.head_count_kv")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
ropeDim: c.Uint("rope.dimension_count"),
},
}, nil
}
type SelfAttention struct {
Query *nn.Linear `ggml:"attn_q"`
Key *nn.Linear `ggml:"attn_k"`
Value *nn.Linear `ggml:"attn_v"`
Output *nn.Linear `ggml:"attn_output"`
}
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache model.Cache, opts *Options) ml.Tensor {
batchSize := hiddenState.Dim(0)
headDim := opts.hiddenSize / opts.numHeads
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
// q = q.Rope(ctx, positionIDs, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
// k = k.Rope(ctx, positionIDs, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
k, v = cache.Put(ctx, k, v, cache.Options)
q = q.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
k = k.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
v = v.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
slog.Info("self attention", "q", q, "k", k, "v", v)
kq := k.Mulmat(ctx, q)
kq = kq.Scale(ctx, 1.0/math.Sqrt(float64(headDim)))
kq = kq.Softmax(ctx)
kqv := v.Mulmat(ctx, kq)
kqv = kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
kqv = kqv.Reshape(ctx, opts.hiddenSize, batchSize)
return sa.Output.Forward(ctx, kqv)
}
type MLP struct {
Up *nn.Linear `ggml:"ffn_up"`
Down *nn.Linear `ggml:"ffn_down"`
Gate *nn.Linear `ggml:"ffn_gate"`
}
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
type Layer struct {
AttentionNorm *nn.RMSNorm `ggml:"attn_norm"`
SelfAttention *SelfAttention
MLPNorm *nn.RMSNorm `ggml:"ffn_norm"`
MLP *MLP
}
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache model.Cache, opts *Options) ml.Tensor {
residual := hiddenState
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
hiddenState = hiddenState.Add(ctx, residual)
residual = hiddenState
hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
return hiddenState.Add(ctx, residual)
}
func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
inputs, err := ctx.FromIntSlice(opts.Inputs(), len(opts.Inputs()))
if err != nil {
return nil, err
}
positions, err := ctx.FromIntSlice(opts.Positions(), len(opts.Positions()))
if err != nil {
return nil, err
}
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
slog.Info("breakpoint", "inputs", inputs, "positions", positions, "hiddenState", hiddenState)
for i, layer := range m.Layers {
hiddenState = layer.Forward(ctx, hiddenState, positions, opts.Cache.Sub(i), m.Options)
}
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
hiddenState = m.Output.Forward(ctx, hiddenState)
outputs, err := ctx.FromIntSlice([]int32{int32(len(opts.Positions())) - 1}, 1)
if err != nil {
return nil, err
}
return hiddenState.Rows(ctx, outputs), nil
}
func init() {
model.Register("llama", New)
}