mirror of
https://github.com/ollama/ollama.git
synced 2025-11-10 23:57:32 +01:00
114 lines
2.8 KiB
Plaintext
114 lines
2.8 KiB
Plaintext
---
|
||
title: Embeddings
|
||
description: Generate text embeddings for semantic search, retrieval, and RAG.
|
||
---
|
||
|
||
Embeddings turn text into numeric vectors you can store in a vector database, search with cosine similarity, or use in RAG pipelines. The vector length depends on the model (typically 384–1024 dimensions).
|
||
|
||
## Recommended models
|
||
|
||
- [embeddinggemma](https://ollama.com/library/embeddinggemma)
|
||
- [qwen3-embedding](https://ollama.com/library/qwen3-embedding)
|
||
- [all-minilm](https://ollama.com/library/all-minilm)
|
||
|
||
## Generate embeddings
|
||
|
||
Use `/api/embed` with a single string.
|
||
|
||
<Tabs>
|
||
<Tab title="cURL">
|
||
```shell
|
||
curl -X POST http://localhost:11434/api/embed \
|
||
-H "Content-Type: application/json" \
|
||
-d '{
|
||
"model": "embeddinggemma",
|
||
"input": "The quick brown fox jumps over the lazy dog."
|
||
}'
|
||
```
|
||
</Tab>
|
||
<Tab title="Python">
|
||
```python
|
||
import ollama
|
||
|
||
single = ollama.embed(
|
||
model='embeddinggemma',
|
||
input='The quick brown fox jumps over the lazy dog.'
|
||
)
|
||
print(len(single['embeddings'][0])) # vector length
|
||
```
|
||
</Tab>
|
||
<Tab title="JavaScript">
|
||
```javascript
|
||
import ollama from 'ollama'
|
||
|
||
const single = await ollama.embed({
|
||
model: 'embeddinggemma',
|
||
input: 'The quick brown fox jumps over the lazy dog.',
|
||
})
|
||
console.log(single.embeddings[0].length) // vector length
|
||
```
|
||
</Tab>
|
||
</Tabs>
|
||
|
||
<Note>
|
||
The `/api/embed` endpoint returns L2‑normalized (unit‑length) vectors.
|
||
</Note>
|
||
|
||
## Generate a batch of embeddings
|
||
|
||
Pass an array of strings to `input`.
|
||
|
||
<Tabs>
|
||
<Tab title="cURL">
|
||
```shell
|
||
curl -X POST http://localhost:11434/api/embed \
|
||
-H "Content-Type: application/json" \
|
||
-d '{
|
||
"model": "embeddinggemma",
|
||
"input": [
|
||
"First sentence",
|
||
"Second sentence",
|
||
"Third sentence"
|
||
]
|
||
}'
|
||
```
|
||
</Tab>
|
||
<Tab title="Python">
|
||
```python
|
||
import ollama
|
||
|
||
batch = ollama.embed(
|
||
model='embeddinggemma',
|
||
input=[
|
||
'The quick brown fox jumps over the lazy dog.',
|
||
'The five boxing wizards jump quickly.',
|
||
'Jackdaws love my big sphinx of quartz.',
|
||
]
|
||
)
|
||
print(len(batch['embeddings'])) # number of vectors
|
||
```
|
||
</Tab>
|
||
<Tab title="JavaScript">
|
||
```javascript
|
||
import ollama from 'ollama'
|
||
|
||
const batch = await ollama.embed({
|
||
model: 'embeddinggemma',
|
||
input: [
|
||
'The quick brown fox jumps over the lazy dog.',
|
||
'The five boxing wizards jump quickly.',
|
||
'Jackdaws love my big sphinx of quartz.',
|
||
],
|
||
})
|
||
console.log(batch.embeddings.length) // number of vectors
|
||
```
|
||
</Tab>
|
||
</Tabs>
|
||
|
||
## Tips
|
||
|
||
- Use cosine similarity for most semantic search use cases.
|
||
- Use the same embedding model for both indexing and querying.
|
||
|
||
|