mirror of
https://github.com/ollama/ollama.git
synced 2025-04-22 14:34:28 +02:00
165 lines
4.4 KiB
Go
165 lines
4.4 KiB
Go
package mllama
|
|
|
|
import (
|
|
"bytes"
|
|
"encoding/binary"
|
|
"fmt"
|
|
"hash/fnv"
|
|
"image"
|
|
"slices"
|
|
|
|
"github.com/ollama/ollama/fs"
|
|
"github.com/ollama/ollama/kvcache"
|
|
"github.com/ollama/ollama/ml"
|
|
"github.com/ollama/ollama/ml/nn"
|
|
"github.com/ollama/ollama/model"
|
|
"github.com/ollama/ollama/model/input"
|
|
)
|
|
|
|
type Model struct {
|
|
model.Base
|
|
model.BytePairEncoding
|
|
|
|
*VisionModel `gguf:"v,vision"`
|
|
*TextModel
|
|
|
|
Projector *nn.Linear `gguf:"mm.0"`
|
|
|
|
ImageProcessor
|
|
}
|
|
|
|
const (
|
|
crossAttentionLayer = iota
|
|
selfAttentionLayer
|
|
)
|
|
|
|
func New(c fs.Config) (model.Model, error) {
|
|
// Verify unified config
|
|
if c.Uint("vision.block_count") == 0 {
|
|
return nil, fmt.Errorf("non-unified vision model not supported")
|
|
}
|
|
m := Model{
|
|
BytePairEncoding: model.NewBytePairEncoding(
|
|
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
|
|
&model.Vocabulary{
|
|
Values: c.Strings("tokenizer.ggml.tokens"),
|
|
Types: c.Uints("tokenizer.ggml.token_type"),
|
|
Merges: c.Strings("tokenizer.ggml.merges"),
|
|
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
|
|
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
|
|
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
|
|
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
|
|
},
|
|
),
|
|
ImageProcessor: newImageProcessor(c),
|
|
VisionModel: newVisionModel(c),
|
|
TextModel: newTextModel(c),
|
|
}
|
|
|
|
encoderCache := kvcache.NewEncoderCache()
|
|
encoderCache.SetConfig(ml.CacheConfig{})
|
|
m.Cache = kvcache.NewWrapperCache(encoderCache, kvcache.NewCausalCache(m.TextModel.Shift))
|
|
|
|
return &m, nil
|
|
}
|
|
|
|
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
|
|
if len(m.VisionModel.Transformer.Layers) == 0 || len(m.GlobalTransformer.Layers) == 0 {
|
|
return nil, model.ErrNoVisionModel
|
|
}
|
|
|
|
image, _, err := image.Decode(bytes.NewReader(multimodalData))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
f32s, aspectRatioID, err := m.ImageProcessor.ProcessImage(image)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
pixelValues, err := ctx.Input().FromFloatSlice(f32s,
|
|
m.ImageProcessor.imageSize,
|
|
m.ImageProcessor.imageSize,
|
|
m.ImageProcessor.numChannels,
|
|
m.ImageProcessor.maxNumTiles,
|
|
)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
aspectRatio, err := ctx.Input().FromIntSlice([]int32{int32(aspectRatioID)}, 1)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
positions := make([]int32, 1601)
|
|
for i := range positions {
|
|
positions[i] = int32(i)
|
|
}
|
|
|
|
positionIDs, err := ctx.Input().FromIntSlice(positions, len(positions))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
crossAttentionStates := m.VisionModel.Forward(ctx, pixelValues, positionIDs, aspectRatio)
|
|
return m.Projector.Forward(ctx, crossAttentionStates), nil
|
|
}
|
|
|
|
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
|
|
var images []input.Input
|
|
fnvHash := fnv.New64a()
|
|
|
|
for i := range inputs {
|
|
if inputs[i].Multimodal == nil {
|
|
if len(images) > 0 {
|
|
inputs[i].Multimodal = []ml.Tensor{images[0].Multimodal.(ml.Tensor)}
|
|
inputs[i].MultimodalHash = images[0].MultimodalHash
|
|
for j := 1; j < len(images); j++ {
|
|
inputs[i].Multimodal = append(inputs[i].Multimodal.([]ml.Tensor), images[0].Multimodal.(ml.Tensor))
|
|
fnvHash.Reset()
|
|
binary.Write(fnvHash, binary.NativeEndian, inputs[i].MultimodalHash)
|
|
binary.Write(fnvHash, binary.NativeEndian, inputs[j].MultimodalHash)
|
|
inputs[i].MultimodalHash = fnvHash.Sum64()
|
|
}
|
|
images = nil
|
|
}
|
|
} else {
|
|
images = append(images, inputs[i])
|
|
inputs[i].Token = -1
|
|
}
|
|
}
|
|
|
|
inputs = slices.DeleteFunc(inputs, func(input input.Input) bool { return input.Token == -1 })
|
|
|
|
return inputs, nil
|
|
}
|
|
|
|
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
|
var crossAttentionStates ml.Tensor
|
|
if len(batch.Multimodal) > 0 {
|
|
images := batch.Multimodal[len(batch.Multimodal)-1].Multimodal.([]ml.Tensor)
|
|
if len(images) > 0 {
|
|
crossAttentionStates = images[len(images)-1]
|
|
}
|
|
}
|
|
|
|
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// TODO: attention mask, cross attention mask
|
|
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, nil, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache)), nil
|
|
}
|
|
|
|
func init() {
|
|
model.Register("mllama", New)
|
|
}
|