2025-04-02 16:57:55 -07:00

165 lines
4.4 KiB
Go

package mllama
import (
"bytes"
"encoding/binary"
"fmt"
"hash/fnv"
"image"
"slices"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Model struct {
model.Base
model.BytePairEncoding
*VisionModel `gguf:"v,vision"`
*TextModel
Projector *nn.Linear `gguf:"mm.0"`
ImageProcessor
}
const (
crossAttentionLayer = iota
selfAttentionLayer
)
func New(c fs.Config) (model.Model, error) {
// Verify unified config
if c.Uint("vision.block_count") == 0 {
return nil, fmt.Errorf("non-unified vision model not supported")
}
m := Model{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Uints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
},
),
ImageProcessor: newImageProcessor(c),
VisionModel: newVisionModel(c),
TextModel: newTextModel(c),
}
encoderCache := kvcache.NewEncoderCache()
encoderCache.SetConfig(ml.CacheConfig{})
m.Cache = kvcache.NewWrapperCache(encoderCache, kvcache.NewCausalCache(m.TextModel.Shift))
return &m, nil
}
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
if len(m.VisionModel.Transformer.Layers) == 0 || len(m.GlobalTransformer.Layers) == 0 {
return nil, model.ErrNoVisionModel
}
image, _, err := image.Decode(bytes.NewReader(multimodalData))
if err != nil {
return nil, err
}
f32s, aspectRatioID, err := m.ImageProcessor.ProcessImage(image)
if err != nil {
return nil, err
}
pixelValues, err := ctx.Input().FromFloatSlice(f32s,
m.ImageProcessor.imageSize,
m.ImageProcessor.imageSize,
m.ImageProcessor.numChannels,
m.ImageProcessor.maxNumTiles,
)
if err != nil {
return nil, err
}
aspectRatio, err := ctx.Input().FromIntSlice([]int32{int32(aspectRatioID)}, 1)
if err != nil {
return nil, err
}
positions := make([]int32, 1601)
for i := range positions {
positions[i] = int32(i)
}
positionIDs, err := ctx.Input().FromIntSlice(positions, len(positions))
if err != nil {
return nil, err
}
crossAttentionStates := m.VisionModel.Forward(ctx, pixelValues, positionIDs, aspectRatio)
return m.Projector.Forward(ctx, crossAttentionStates), nil
}
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
var images []input.Input
fnvHash := fnv.New64a()
for i := range inputs {
if inputs[i].Multimodal == nil {
if len(images) > 0 {
inputs[i].Multimodal = []ml.Tensor{images[0].Multimodal.(ml.Tensor)}
inputs[i].MultimodalHash = images[0].MultimodalHash
for j := 1; j < len(images); j++ {
inputs[i].Multimodal = append(inputs[i].Multimodal.([]ml.Tensor), images[0].Multimodal.(ml.Tensor))
fnvHash.Reset()
binary.Write(fnvHash, binary.NativeEndian, inputs[i].MultimodalHash)
binary.Write(fnvHash, binary.NativeEndian, inputs[j].MultimodalHash)
inputs[i].MultimodalHash = fnvHash.Sum64()
}
images = nil
}
} else {
images = append(images, inputs[i])
inputs[i].Token = -1
}
}
inputs = slices.DeleteFunc(inputs, func(input input.Input) bool { return input.Token == -1 })
return inputs, nil
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
var crossAttentionStates ml.Tensor
if len(batch.Multimodal) > 0 {
images := batch.Multimodal[len(batch.Multimodal)-1].Multimodal.([]ml.Tensor)
if len(images) > 0 {
crossAttentionStates = images[len(images)-1]
}
}
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
if err != nil {
return nil, err
}
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
if err != nil {
return nil, err
}
// TODO: attention mask, cross attention mask
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, nil, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache)), nil
}
func init() {
model.Register("mllama", New)
}