mirror of
https://github.com/ollama/ollama.git
synced 2025-11-10 23:27:54 +01:00
This refactors the main run loop of the ollama runner to perform the main GPU intensive tasks (Compute+Floats) in a go routine so we can prepare the next batch in parallel to reduce the amount of time the GPU stalls waiting for the next batch of work.
627 lines
16 KiB
Go
627 lines
16 KiB
Go
package ml
|
|
|
|
import (
|
|
"bytes"
|
|
"context"
|
|
"encoding/binary"
|
|
"fmt"
|
|
"hash/maphash"
|
|
"log/slog"
|
|
"math"
|
|
"slices"
|
|
"strconv"
|
|
"strings"
|
|
|
|
"github.com/ollama/ollama/format"
|
|
"github.com/ollama/ollama/fs"
|
|
)
|
|
|
|
type Backend interface {
|
|
// Close frees all memory associated with this backend
|
|
Close()
|
|
|
|
Load(ctx context.Context, progress func(float32)) error
|
|
|
|
// BackendMemory returns the memory allocations that were made for this model
|
|
BackendMemory() BackendMemory
|
|
|
|
Config() fs.Config
|
|
Get(name string) Tensor
|
|
NewContext() Context
|
|
NewContextSize(size int) Context
|
|
}
|
|
|
|
// BackendCacheConfig should be implemented by backends that need special output
|
|
// from the cache to meet specific requirements. It is frequently implemented in
|
|
// conjunction with ScaledDotProductAttention.
|
|
type BackendCacheConfig interface {
|
|
CacheConfig() CacheConfig
|
|
}
|
|
|
|
// CacheConfig controls optimizations (mostly backend-specific) that may transform
|
|
// the output the cache to work better with specific kernels.
|
|
type CacheConfig struct {
|
|
// CachePadding specifies the multiple for the number of tokens of cache history
|
|
// that will be returned from cache Get for k, v and mask. The capacity of the
|
|
// cache itself will also be increased to a multiple of this size if needed.
|
|
CachePadding int
|
|
|
|
// PermutedV performs Permute(ctx, 1, 2, 0, 3) on v tensors stored via Put
|
|
// and return the permuted version via Get. This uses the cache copy operation
|
|
// to avoid a Contiguous call on the permuted tensor.
|
|
PermutedV bool
|
|
|
|
// MaskDType specifies the data type for generating the mask. If unset it will
|
|
// default to DTypeF32.
|
|
MaskDType DType
|
|
|
|
// MaskBatchPadding specifies the multiple for the batch size dimension in the mask.
|
|
// Any position that does not correspond to an actual token will be filled with -Inf.
|
|
MaskBatchPadding int
|
|
}
|
|
|
|
// GPULayers is a set of layers to be allocated on a single GPU
|
|
type GPULayers struct {
|
|
// ID is the identifier of the GPU, as reported in DeviceMemory
|
|
ID string
|
|
|
|
// Layers is a set of layer indicies to load
|
|
Layers []int
|
|
}
|
|
|
|
func (g GPULayers) String() string {
|
|
if len(g.Layers) == 0 {
|
|
return ""
|
|
}
|
|
|
|
slices.Sort(g.Layers)
|
|
|
|
contiguous := true
|
|
base := g.Layers[0]
|
|
for i := range g.Layers {
|
|
if g.Layers[i] != base+i {
|
|
contiguous = false
|
|
break
|
|
}
|
|
}
|
|
|
|
if contiguous {
|
|
return fmt.Sprintf("ID:%v Layers:%v(%v..%v)", g.ID, len(g.Layers), g.Layers[0], g.Layers[len(g.Layers)-1])
|
|
} else {
|
|
return fmt.Sprintf("ID:%v Layers:%v%v", g.ID, len(g.Layers), g.Layers)
|
|
}
|
|
}
|
|
|
|
// GPULayersList is a set of layer allocations across multiple GPUs
|
|
type GPULayersList []GPULayers
|
|
|
|
func (l GPULayersList) String() string {
|
|
if l.Sum() > 0 {
|
|
return fmt.Sprintf("%v%v", l.Sum(), []GPULayers(l))
|
|
} else {
|
|
return fmt.Sprintf("%v", []GPULayers(l))
|
|
}
|
|
}
|
|
|
|
// Sum is the total number of layers assigned across all GPUs
|
|
func (l GPULayersList) Sum() int {
|
|
var sum int
|
|
|
|
for _, g := range l {
|
|
sum += len(g.Layers)
|
|
}
|
|
|
|
return sum
|
|
}
|
|
|
|
var h maphash.Hash
|
|
|
|
// Hash is an identifier of this layer assignment
|
|
func (l GPULayersList) Hash() uint64 {
|
|
h.Reset()
|
|
for _, g := range l {
|
|
if len(g.Layers) > 0 {
|
|
h.WriteString(g.ID)
|
|
for _, l := range g.Layers {
|
|
binary.Write(&h, binary.NativeEndian, int64(l))
|
|
}
|
|
}
|
|
}
|
|
|
|
return h.Sum64()
|
|
}
|
|
|
|
// BackendParams controls how the backend loads and executes models
|
|
type BackendParams struct {
|
|
// AllocMemory causes the backend to allocate memory for the model. If
|
|
// false, this is only being used for discovering the required amount of
|
|
// memory and cannot load the model for running.
|
|
AllocMemory bool
|
|
|
|
// NumThreads sets the number of threads to use if running on the CPU
|
|
NumThreads int
|
|
|
|
// GPULayers is the set of layers to offload to GPUs
|
|
GPULayers GPULayersList
|
|
|
|
// FlashAttention indicates that we should use a fused flash attention kernel
|
|
FlashAttention bool
|
|
}
|
|
|
|
// ErrNoMem is returned when panicing due to insufficient memory. It includes
|
|
// the attempted memory allocation.
|
|
type ErrNoMem struct {
|
|
BackendMemory
|
|
}
|
|
|
|
func (e ErrNoMem) Error() string {
|
|
return fmt.Sprintf("insufficient memory - required allocations: %+v", e.BackendMemory)
|
|
}
|
|
|
|
type AllocationStatus int
|
|
|
|
const (
|
|
// Unallocated memory - have not yet attempted to allocate
|
|
Unallocated AllocationStatus = iota
|
|
|
|
// Failed memory - tried to allocate the memory and did not succeed
|
|
Failed
|
|
|
|
// Allocated memory = tried and succeeded to allocate memory
|
|
Allocated
|
|
)
|
|
|
|
// Memory is the size of an allocation and whether it was successful.
|
|
type Memory struct {
|
|
Size uint64
|
|
Status AllocationStatus
|
|
}
|
|
|
|
func (m Memory) String() string {
|
|
s := fmt.Sprint(m.Size)
|
|
|
|
switch m.Status {
|
|
case Unallocated:
|
|
s += "U"
|
|
case Failed:
|
|
s += "F"
|
|
case Allocated:
|
|
s += "A"
|
|
}
|
|
|
|
return s
|
|
}
|
|
|
|
// DeviceMemory provides a breakdown of the memory needed
|
|
// per device, such as a CPU or GPU.
|
|
type DeviceMemory struct {
|
|
// Name is the name of the device as labeled by the backend. It
|
|
// may not be persistent across instances of the runner.
|
|
Name string
|
|
|
|
// ID is an identifier for the device for matching with system
|
|
// management libraries.
|
|
ID string
|
|
|
|
// Weights is the per-layer memory needed for the model weights.
|
|
Weights []Memory
|
|
|
|
// Cache is the per-layer memory needed for the KV cache.
|
|
Cache []Memory
|
|
|
|
// Graph is the size of the compute graph. It is not per-layer.
|
|
Graph Memory
|
|
}
|
|
|
|
// Allocated returns the total size of the memory that has been successfully
|
|
// allocated on this device
|
|
func (m DeviceMemory) Allocated() uint64 {
|
|
var mem uint64
|
|
|
|
for _, w := range m.Weights {
|
|
if w.Status == Allocated {
|
|
mem += w.Size
|
|
}
|
|
}
|
|
for _, c := range m.Cache {
|
|
if c.Status == Allocated {
|
|
mem += c.Size
|
|
}
|
|
}
|
|
if m.Graph.Status == Allocated {
|
|
mem += m.Graph.Size
|
|
}
|
|
|
|
return mem
|
|
}
|
|
|
|
func memoryPresent(mem []Memory) bool {
|
|
return slices.ContainsFunc(mem, func(m Memory) bool { return m.Size != 0 })
|
|
}
|
|
|
|
func (m DeviceMemory) LogValue() slog.Value {
|
|
var attrs []slog.Attr
|
|
if memoryPresent(m.Weights) {
|
|
attrs = append(attrs, slog.Any("Weights", m.Weights))
|
|
}
|
|
|
|
if memoryPresent(m.Cache) {
|
|
attrs = append(attrs, slog.Any("Cache", m.Cache))
|
|
}
|
|
|
|
if m.Graph.Size != 0 {
|
|
attrs = append(attrs, slog.Any("Graph", m.Graph))
|
|
}
|
|
|
|
if len(attrs) > 0 && m.ID != "" {
|
|
attrs = append([]slog.Attr{slog.String("ID", m.ID)}, attrs...)
|
|
}
|
|
|
|
return slog.GroupValue(attrs...)
|
|
}
|
|
|
|
// BackendMemory provides the amount of memory required to load the model
|
|
// per device based on the BackendParams. In some cases, not all required
|
|
// allocations will be known at this point. However, the size of the most recent
|
|
// allocation is guaranteed to be provided so that if it failed, the caller can
|
|
// accommodate that to make forward progress.
|
|
type BackendMemory struct {
|
|
// InputsWeights are always located on the CPU and cannot be moved
|
|
InputWeights Memory
|
|
|
|
// CPU model components are located in system memory. This does not
|
|
// include unified memory allocated through the GPU.
|
|
CPU DeviceMemory
|
|
|
|
// GPU model components are located on one or more GPUs.
|
|
GPUs []DeviceMemory
|
|
}
|
|
|
|
func (m BackendMemory) LogValue() slog.Value {
|
|
var attrs []slog.Attr
|
|
if m.InputWeights.Size != 0 {
|
|
attrs = append(attrs, slog.Any("InputWeights", m.InputWeights))
|
|
}
|
|
|
|
attrs = append(attrs, slog.Any(m.CPU.Name, m.CPU))
|
|
for _, g := range m.GPUs {
|
|
attrs = append(attrs, slog.Any(g.Name, g))
|
|
}
|
|
|
|
return slog.GroupValue(attrs...)
|
|
}
|
|
|
|
func sumMemory(mem []Memory) uint64 {
|
|
var sum uint64
|
|
|
|
for _, m := range mem {
|
|
sum += m.Size
|
|
}
|
|
|
|
return sum
|
|
}
|
|
|
|
// Log prints a high level summary of the memory (allocated or not)
|
|
func (m BackendMemory) Log(level slog.Level) {
|
|
var total uint64
|
|
|
|
for _, gpu := range m.GPUs {
|
|
if sum := sumMemory(gpu.Weights); sum > 0 {
|
|
slog.Log(context.TODO(), level, "model weights", "device", gpu.Name, "size", format.HumanBytes2(sum))
|
|
total += sum
|
|
}
|
|
}
|
|
if sum := m.InputWeights.Size + sumMemory(m.CPU.Weights); sum > 0 {
|
|
slog.Log(context.TODO(), level, "model weights", "device", m.CPU.Name, "size", format.HumanBytes2(sum))
|
|
total += sum
|
|
}
|
|
|
|
for _, gpu := range m.GPUs {
|
|
if sum := sumMemory(gpu.Cache); sum > 0 {
|
|
slog.Log(context.TODO(), level, "kv cache", "device", gpu.Name, "size", format.HumanBytes2(sum))
|
|
total += sum
|
|
}
|
|
}
|
|
if sum := sumMemory(m.CPU.Cache); sum > 0 {
|
|
slog.Log(context.TODO(), level, "kv cache", "device", m.CPU.Name, "size", format.HumanBytes2(sum))
|
|
total += sum
|
|
}
|
|
|
|
for _, gpu := range m.GPUs {
|
|
if sum := gpu.Graph.Size; sum > 0 {
|
|
slog.Log(context.TODO(), level, "compute graph", "device", gpu.Name, "size", format.HumanBytes2(sum))
|
|
total += sum
|
|
}
|
|
}
|
|
if sum := m.CPU.Graph.Size; sum > 0 {
|
|
slog.Log(context.TODO(), level, "compute graph", "device", m.CPU.Name, "size", format.HumanBytes2(sum))
|
|
total += sum
|
|
}
|
|
|
|
if total > 0 {
|
|
slog.Log(context.TODO(), level, "total memory", "size", format.HumanBytes2(total))
|
|
}
|
|
}
|
|
|
|
var backends = make(map[string]func(string, BackendParams) (Backend, error))
|
|
|
|
func RegisterBackend(name string, f func(string, BackendParams) (Backend, error)) {
|
|
if _, ok := backends[name]; ok {
|
|
panic("backend: backend already registered")
|
|
}
|
|
|
|
backends[name] = f
|
|
}
|
|
|
|
func NewBackend(modelPath string, params BackendParams) (Backend, error) {
|
|
if backend, ok := backends["ggml"]; ok {
|
|
return backend(modelPath, params)
|
|
}
|
|
|
|
return nil, fmt.Errorf("unsupported backend")
|
|
}
|
|
|
|
type Context interface {
|
|
Empty(dtype DType, shape ...int) Tensor
|
|
Zeros(dtype DType, shape ...int) Tensor
|
|
FromFloatSlice(s []float32, shape ...int) Tensor
|
|
FromIntSlice(s []int32, shape ...int) Tensor
|
|
|
|
// Arange creates a 1D tensor with values within an interval (start, stop] increased by step.
|
|
Arange(start, stop, step float32, dtype DType) Tensor
|
|
|
|
Forward(...Tensor) Context
|
|
Compute(...Tensor)
|
|
|
|
// Reserve is analogous to Compute but rather than executing a
|
|
// graph, simply preallocates memory. Typically called with a
|
|
// worst case graph to ensure all resources are available for
|
|
// for future inference.
|
|
Reserve()
|
|
|
|
MaxGraphNodes() int
|
|
Close()
|
|
|
|
// Input returns a context appropriate for creating tensors that are
|
|
// inputs to the model (which includes things like output locations)
|
|
Input() Context
|
|
|
|
// Layer returns a context appropriate for creating intermediate tensors
|
|
Layer(int) Context
|
|
}
|
|
|
|
type Tensor interface {
|
|
Dim(n int) int
|
|
Stride(n int) int
|
|
|
|
Shape() []int
|
|
DType() DType
|
|
|
|
Bytes() []byte
|
|
Floats() []float32
|
|
|
|
BackendSetFromIntSlice(s []int32)
|
|
|
|
Neg(ctx Context) Tensor
|
|
Add(ctx Context, t2 Tensor) Tensor
|
|
Sub(ctx Context, t2 Tensor) Tensor
|
|
Mul(ctx Context, t2 Tensor) Tensor
|
|
Div(ctx Context, t2 Tensor) Tensor
|
|
|
|
Mulmat(ctx Context, t2 Tensor) Tensor
|
|
MulmatFullPrec(ctx Context, t2 Tensor) Tensor
|
|
MulmatID(ctx Context, t2, ids Tensor) Tensor
|
|
AddID(ctx Context, t2, ids Tensor) Tensor
|
|
|
|
Softmax(ctx Context) Tensor
|
|
LayerNorm(ctx Context, weight, bias Tensor, eps float32) Tensor
|
|
RMSNorm(ctx Context, weight Tensor, eps float32) Tensor
|
|
Scale(ctx Context, s float64) Tensor
|
|
SumRows(ctx Context) Tensor
|
|
|
|
AvgPool2D(ctx Context, k, s int, p float32) Tensor
|
|
Conv2D(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
|
|
|
|
IM2Col(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
|
|
|
|
Sin(ctx Context) Tensor
|
|
Cos(ctx Context) Tensor
|
|
Tanh(ctx Context) Tensor
|
|
GELU(ctx Context) Tensor
|
|
QuickGELU(ctx Context) Tensor
|
|
SILU(ctx Context) Tensor
|
|
RELU(ctx Context) Tensor
|
|
Sigmoid(ctx Context) Tensor
|
|
SwiGLU(ctx Context, up Tensor, alpha, limit float32) Tensor
|
|
|
|
Reshape(ctx Context, shape ...int) Tensor
|
|
View(ctx Context, offset int, shape ...int) Tensor
|
|
Permute(ctx Context, shape ...int) Tensor
|
|
Contiguous(ctx Context, shape ...int) Tensor
|
|
Set(ctx Context, t2 Tensor, offset int, strides ...int) Tensor
|
|
|
|
Pad(ctx Context, shape ...int) Tensor
|
|
|
|
Stack(ctx Context, dim int, s ...Tensor) Tensor
|
|
|
|
// Repeat repeats the tensor n times along dimension dim
|
|
Repeat(ctx Context, dim, n int) Tensor
|
|
Concat(ctx Context, t2 Tensor, dim int) Tensor
|
|
Rows(ctx Context, t2 Tensor) Tensor
|
|
Copy(ctx Context, t2 Tensor) Tensor
|
|
Duplicate(ctx Context) Tensor
|
|
|
|
TopK(ctx Context, k int) Tensor
|
|
Argsort(ctx Context) Tensor
|
|
Mean(ctx Context) Tensor
|
|
Variance(ctx Context) Tensor
|
|
Stddev(ctx Context) Tensor
|
|
Sqr(ctx Context) Tensor
|
|
Sqrt(ctx Context) Tensor
|
|
Clamp(ctx Context, min, max float32) Tensor
|
|
}
|
|
|
|
// ScaledDotProductAttention implements a fused attention
|
|
// operation equivalent to following code on a tensor named
|
|
// query:
|
|
//
|
|
// query = query.Permute(ctx, 0, 2, 1, 3)
|
|
// key = key.Permute(ctx, 0, 2, 1, 3)
|
|
// value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
|
|
//
|
|
// kq := key.MulmatFullPrec(ctx, query)
|
|
//
|
|
// kq = kq.Scale(ctx, scale)
|
|
//
|
|
// if mask != nil {
|
|
// kq = kq.Add(ctx, mask)
|
|
// }
|
|
//
|
|
// kq = kq.Softmax(ctx)
|
|
//
|
|
// kqv := value.Mulmat(ctx, kq)
|
|
// return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
|
type ScaledDotProductAttention interface {
|
|
ScaledDotProductAttention(ctx Context, key, value, mask, sinks Tensor, scale float64) Tensor
|
|
}
|
|
|
|
type number interface {
|
|
~int | ~int8 | ~int16 | ~int32 | ~int64 |
|
|
~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 |
|
|
~float32 | ~float64 |
|
|
~complex64 | ~complex128
|
|
}
|
|
|
|
func mul[T number](s ...T) T {
|
|
p := T(1)
|
|
for _, v := range s {
|
|
p *= v
|
|
}
|
|
|
|
return p
|
|
}
|
|
|
|
type DumpOptions func(*dumpOptions)
|
|
|
|
// DumpWithPrecision sets the number of decimal places to print. Applies to float32 and float64.
|
|
func DumpWithPrecision(n int) DumpOptions {
|
|
return func(opts *dumpOptions) {
|
|
opts.Precision = n
|
|
}
|
|
}
|
|
|
|
// DumpWithThreshold sets the threshold for printing the entire tensor. If the number of elements
|
|
// is less than or equal to this value, the entire tensor will be printed. Otherwise, only the
|
|
// beginning and end of each dimension will be printed.
|
|
func DumpWithThreshold(n int) DumpOptions {
|
|
return func(opts *dumpOptions) {
|
|
opts.Threshold = n
|
|
}
|
|
}
|
|
|
|
// DumpWithEdgeItems sets the number of elements to print at the beginning and end of each dimension.
|
|
func DumpWithEdgeItems(n int) DumpOptions {
|
|
return func(opts *dumpOptions) {
|
|
opts.EdgeItems = n
|
|
}
|
|
}
|
|
|
|
type dumpOptions struct {
|
|
Precision, Threshold, EdgeItems int
|
|
}
|
|
|
|
func Dump(ctx Context, t Tensor, optsFuncs ...DumpOptions) string {
|
|
opts := dumpOptions{Precision: 4, Threshold: 1000, EdgeItems: 3}
|
|
for _, optsFunc := range optsFuncs {
|
|
optsFunc(&opts)
|
|
}
|
|
|
|
if mul(t.Shape()...) <= opts.Threshold {
|
|
opts.EdgeItems = math.MaxInt
|
|
}
|
|
|
|
switch t.DType() {
|
|
case DTypeF32:
|
|
return dump[[]float32](ctx, t, opts.EdgeItems, func(f float32) string {
|
|
return strconv.FormatFloat(float64(f), 'f', opts.Precision, 32)
|
|
})
|
|
case DTypeF16, DTypeQ80, DTypeQ40:
|
|
f32 := ctx.Input().Empty(DTypeF32, t.Shape()...)
|
|
f32 = t.Copy(ctx, f32)
|
|
return dump[[]float32](ctx, f32, opts.EdgeItems, func(f float32) string {
|
|
return strconv.FormatFloat(float64(f), 'f', opts.Precision, 32)
|
|
})
|
|
case DTypeI32:
|
|
return dump[[]int32](ctx, t, opts.EdgeItems, func(i int32) string {
|
|
return strconv.FormatInt(int64(i), 10)
|
|
})
|
|
default:
|
|
return "<unsupported>"
|
|
}
|
|
}
|
|
|
|
func dump[S ~[]E, E number](ctx Context, t Tensor, items int, fn func(E) string) string {
|
|
if t.Bytes() == nil {
|
|
ctx.Forward(t).Compute(t)
|
|
}
|
|
|
|
s := make(S, mul(t.Shape()...))
|
|
if err := binary.Read(bytes.NewBuffer(t.Bytes()), binary.LittleEndian, &s); err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
shape := t.Shape()
|
|
slices.Reverse(shape)
|
|
|
|
var sb strings.Builder
|
|
var f func([]int, int)
|
|
f = func(dims []int, stride int) {
|
|
prefix := strings.Repeat(" ", len(shape)-len(dims)+1)
|
|
sb.WriteString("[")
|
|
defer func() { sb.WriteString("]") }()
|
|
for i := 0; i < dims[0]; i++ {
|
|
if i >= items && i < dims[0]-items {
|
|
sb.WriteString("..., ")
|
|
// skip to next printable element
|
|
skip := dims[0] - 2*items
|
|
if len(dims) > 1 {
|
|
stride += mul(append(dims[1:], skip)...)
|
|
fmt.Fprint(&sb, strings.Repeat("\n", len(dims)-1), prefix)
|
|
}
|
|
i += skip - 1
|
|
} else if len(dims) > 1 {
|
|
f(dims[1:], stride)
|
|
stride += mul(dims[1:]...)
|
|
if i < dims[0]-1 {
|
|
fmt.Fprint(&sb, ",", strings.Repeat("\n", len(dims)-1), prefix)
|
|
}
|
|
} else {
|
|
text := fn(s[stride+i])
|
|
if len(text) > 0 && text[0] != '-' {
|
|
sb.WriteString(" ")
|
|
}
|
|
|
|
sb.WriteString(text)
|
|
if i < dims[0]-1 {
|
|
sb.WriteString(", ")
|
|
}
|
|
}
|
|
}
|
|
}
|
|
f(shape, 0)
|
|
|
|
return sb.String()
|
|
}
|
|
|
|
type DType int
|
|
|
|
const (
|
|
DTypeOther DType = iota
|
|
DTypeF32
|
|
DTypeF16
|
|
DTypeQ80
|
|
DTypeQ40
|
|
DTypeI32
|
|
DTypeMXFP4
|
|
)
|