mirror of
https://github.com/ollama/ollama.git
synced 2025-05-04 22:30:22 +02:00
868 lines
22 KiB
Go
868 lines
22 KiB
Go
package ollamarunner
|
|
|
|
import (
|
|
"context"
|
|
"encoding/json"
|
|
"errors"
|
|
"flag"
|
|
"fmt"
|
|
"hash/maphash"
|
|
"log"
|
|
"log/slog"
|
|
"net"
|
|
"net/http"
|
|
"os"
|
|
"path/filepath"
|
|
"regexp"
|
|
"runtime"
|
|
"strconv"
|
|
"strings"
|
|
"sync"
|
|
"time"
|
|
"unicode/utf8"
|
|
|
|
"golang.org/x/sync/semaphore"
|
|
|
|
"github.com/ollama/ollama/api"
|
|
"github.com/ollama/ollama/llm"
|
|
"github.com/ollama/ollama/ml"
|
|
"github.com/ollama/ollama/model"
|
|
"github.com/ollama/ollama/model/input"
|
|
"github.com/ollama/ollama/runner/common"
|
|
"github.com/ollama/ollama/sample"
|
|
|
|
_ "github.com/ollama/ollama/model/models"
|
|
)
|
|
|
|
type contextList struct {
|
|
list []ml.Context
|
|
}
|
|
|
|
type Sequence struct {
|
|
// ctxs are used for allocating tensors that last the lifetime of the sequence, such as
|
|
// multimodal embeddings
|
|
ctxs *contextList
|
|
|
|
// batch index
|
|
iBatch int
|
|
|
|
// prompt inputs left to evaluate
|
|
inputs []input.Input
|
|
|
|
// inputs that have been added to a batch but not yet submitted to Forward
|
|
pendingInputs []input.Input
|
|
|
|
// tokens that have been generated but not returned yet (e.g. for stop sequences)
|
|
pendingResponses []string
|
|
|
|
// input cache being used by this sequence
|
|
cache *InputCacheSlot
|
|
|
|
// channel to send responses over
|
|
responses chan string
|
|
|
|
// channel to stop decoding (such as if the remote connection is closed)
|
|
quit chan bool
|
|
|
|
// number of tokens to predict
|
|
numPredict int
|
|
|
|
// sampler with transforms to run on generated logits
|
|
sampler sample.Sampler
|
|
|
|
// channel to send back the embedding if embedding only
|
|
embedding chan []float32
|
|
|
|
// stop sequences
|
|
stop []string
|
|
|
|
// number of inputs to keep at the beginning when shifting context window
|
|
numKeep int32
|
|
|
|
// true if an embedding are to be returned instead of text generation
|
|
embeddingOnly bool
|
|
|
|
doneReason string
|
|
|
|
// Metrics
|
|
startProcessingTime time.Time
|
|
startGenerationTime time.Time
|
|
numPredicted int
|
|
numPromptInputs int
|
|
}
|
|
|
|
type NewSequenceParams struct {
|
|
numPredict int
|
|
stop []string
|
|
numKeep int32
|
|
sampler sample.Sampler
|
|
embedding bool
|
|
}
|
|
|
|
func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSequenceParams) (*Sequence, error) {
|
|
s.ready.Wait()
|
|
|
|
startTime := time.Now()
|
|
|
|
inputs, ctxs, err := s.inputs(prompt, images)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("failed to process inputs: %w", err)
|
|
} else if len(inputs) == 0 {
|
|
return nil, errors.New("no input provided")
|
|
}
|
|
|
|
if params.numKeep < 0 {
|
|
params.numKeep = int32(len(inputs))
|
|
}
|
|
|
|
// TODO(jessegross): We should ensure that we always leave minBatch of context space to shift,
|
|
// otherwise we might truncate or split the batch against the model's wishes
|
|
|
|
// Ensure that at least 1 input can be discarded during shift
|
|
params.numKeep = min(params.numKeep, s.cache.numCtx-1)
|
|
|
|
if int32(len(inputs)) > s.cache.numCtx {
|
|
discard := int32(len(inputs)) - s.cache.numCtx
|
|
newInputs := inputs[:params.numKeep]
|
|
newInputs = append(newInputs, inputs[params.numKeep+discard:]...)
|
|
|
|
slog.Warn("truncating input prompt", "limit", s.cache.numCtx, "prompt", len(inputs), "keep", params.numKeep, "new", len(newInputs))
|
|
inputs = newInputs
|
|
}
|
|
|
|
// TODO(jessegross): Ingest cached history for grammar
|
|
|
|
return &Sequence{
|
|
ctxs: ctxs,
|
|
inputs: inputs,
|
|
numPromptInputs: len(inputs),
|
|
startProcessingTime: startTime,
|
|
numPredict: params.numPredict,
|
|
pendingResponses: make([]string, 0),
|
|
responses: make(chan string, 100),
|
|
quit: make(chan bool, 1),
|
|
embedding: make(chan []float32, 1),
|
|
sampler: params.sampler,
|
|
embeddingOnly: params.embedding,
|
|
stop: params.stop,
|
|
numKeep: params.numKeep,
|
|
}, nil
|
|
}
|
|
|
|
// inputs processes the prompt and images into a list of inputs
|
|
// by splitting the prompt on [img-<n>] tags, tokenizing text and
|
|
// decoding images
|
|
func (s *Server) inputs(prompt string, images []llm.ImageData) ([]input.Input, *contextList, error) {
|
|
var inputs []input.Input
|
|
var parts []string
|
|
var matches [][]string
|
|
|
|
multimodalProcessor, visionModel := s.model.(model.MultimodalProcessor)
|
|
|
|
if visionModel {
|
|
re := regexp.MustCompile(`\[img-(\d+)\]`)
|
|
parts = re.Split(prompt, -1)
|
|
matches = re.FindAllStringSubmatch(prompt, -1)
|
|
} else {
|
|
parts = []string{prompt}
|
|
}
|
|
|
|
var contexts contextList
|
|
runtime.AddCleanup(&contexts, func(ctxs []ml.Context) {
|
|
for _, ctx := range ctxs {
|
|
ctx.Close()
|
|
}
|
|
}, contexts.list)
|
|
|
|
postTokenize := false
|
|
for i, part := range parts {
|
|
// text - tokenize
|
|
tokens, err := s.model.(model.TextProcessor).Encode(part, i == 0)
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
for _, t := range tokens {
|
|
inputs = append(inputs, input.Input{Token: t})
|
|
}
|
|
|
|
// image - decode and store
|
|
if i < len(matches) {
|
|
n, _ := strconv.Atoi(matches[i][1])
|
|
|
|
imageIndex := -1
|
|
for j := range images {
|
|
if images[j].ID == n {
|
|
imageIndex = j
|
|
break
|
|
}
|
|
}
|
|
|
|
if imageIndex < 0 {
|
|
return nil, nil, fmt.Errorf("invalid image index: %d", n)
|
|
}
|
|
|
|
ctx := s.model.Backend().NewContext()
|
|
contexts.list = append(contexts.list, ctx)
|
|
imageEmbeddings, err := multimodalProcessor.EncodeMultimodal(ctx, images[imageIndex].Data)
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
s.multimodalHash.Reset()
|
|
_, _ = s.multimodalHash.Write(images[imageIndex].Data)
|
|
imageHash := s.multimodalHash.Sum64()
|
|
|
|
inputs = append(inputs, input.Input{Multimodal: imageEmbeddings, MultimodalHash: imageHash})
|
|
postTokenize = true
|
|
}
|
|
}
|
|
|
|
if visionModel && postTokenize {
|
|
var err error
|
|
inputs, err = multimodalProcessor.PostTokenize(inputs)
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
}
|
|
|
|
return inputs, &contexts, nil
|
|
}
|
|
|
|
type Server struct {
|
|
// is the server ready to process requests?
|
|
// protects access to model and image
|
|
ready sync.WaitGroup
|
|
|
|
// loaded model
|
|
model model.Model
|
|
|
|
// status for external health reporting - loading, ready to serve, etc.
|
|
status llm.ServerStatus
|
|
|
|
// current progress on loading the model
|
|
progress float32
|
|
|
|
// number of simultaneous requests to handle
|
|
parallel int
|
|
|
|
// maximum number of elements in a batch (per sequence)
|
|
// TODO (jmorganca): make this n_batch
|
|
batchSize int
|
|
|
|
// protects access to everything below this line
|
|
// this is context state needed for decoding
|
|
mu sync.Mutex
|
|
|
|
// indicates that data is ready for processing
|
|
cond *sync.Cond
|
|
|
|
// the list of simultaneous sequences being evaluated
|
|
seqs []*Sequence
|
|
|
|
// seqs can have a maximum of parallel entries, which
|
|
// is enfoced by seqSem
|
|
seqsSem *semaphore.Weighted
|
|
|
|
// KV cache
|
|
cache *InputCache
|
|
|
|
// multimodalHash generates hashes for comparing equality
|
|
// of non-text data
|
|
multimodalHash maphash.Hash
|
|
|
|
// vocab is a llama.cpp vocab required for gammar-based
|
|
// constrained generation (json mode, structured outputs)
|
|
// TODO: this is temporary until Ollama sampling supports
|
|
// constrained generation
|
|
vocab *sample.Vocab
|
|
}
|
|
|
|
func (s *Server) allNil() bool {
|
|
for _, item := range s.seqs {
|
|
if item != nil {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
func flushPending(seq *Sequence) bool {
|
|
joined := strings.Join(seq.pendingResponses, "")
|
|
seq.pendingResponses = []string{}
|
|
|
|
// Check if there are any partial UTF-8 characters remaining.
|
|
// We already check and queue as we are generating but some may
|
|
// still make it here:
|
|
// - Sequence is ending, e.g. generation limit has been hit
|
|
// - Invalid characters in the middle of a string
|
|
// This is a stricter check to ensure we never output invalid Unicode.
|
|
for !utf8.ValidString(joined) {
|
|
joined = joined[:len(joined)-1]
|
|
}
|
|
|
|
if len(joined) == 0 {
|
|
return true
|
|
}
|
|
|
|
select {
|
|
case seq.responses <- joined:
|
|
return true
|
|
case <-seq.quit:
|
|
return false
|
|
}
|
|
}
|
|
|
|
func (s *Server) removeSequence(seqIndex int, reason string) {
|
|
seq := s.seqs[seqIndex]
|
|
|
|
flushPending(seq)
|
|
seq.doneReason = reason
|
|
close(seq.responses)
|
|
close(seq.embedding)
|
|
seq.cache.InUse = false
|
|
s.seqs[seqIndex] = nil
|
|
s.seqsSem.Release(1)
|
|
}
|
|
|
|
func (s *Server) run(ctx context.Context) {
|
|
s.ready.Wait()
|
|
|
|
for {
|
|
select {
|
|
case <-ctx.Done():
|
|
return
|
|
default:
|
|
err := s.processBatch()
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func (s *Server) processBatch() error {
|
|
s.mu.Lock()
|
|
for s.allNil() {
|
|
s.cond.Wait() // Wait until an item is added
|
|
}
|
|
defer s.mu.Unlock()
|
|
|
|
var batchInputs []int32
|
|
var batch input.Batch
|
|
|
|
for i, seq := range s.seqs {
|
|
if seq == nil {
|
|
continue
|
|
}
|
|
|
|
// if past the num predict limit
|
|
if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
|
|
s.removeSequence(i, "limit")
|
|
continue
|
|
}
|
|
|
|
if !s.cache.enabled {
|
|
seq.inputs = append(seq.cache.Inputs, seq.inputs...)
|
|
seq.cache.Inputs = []input.Input{}
|
|
}
|
|
|
|
batchSize := s.batchSize
|
|
|
|
for j, inp := range seq.inputs {
|
|
// If we are required to put following inputs into a single batch then extend the
|
|
// batch size. Since we are only extending the size the minimum amount possible, this
|
|
// will cause a break if we have pending inputs.
|
|
minBatch := 1 + inp.SameBatch
|
|
if minBatch > batchSize {
|
|
batchSize = minBatch
|
|
}
|
|
|
|
if len(seq.pendingInputs)+minBatch > batchSize {
|
|
break
|
|
}
|
|
|
|
// If the sum of our working set (already processed tokens, tokens we added to this
|
|
// batch, required following tokens) exceeds the context size, then trigger a shift
|
|
// now so we don't have to do one later when we can't break the batch.
|
|
if int32(len(seq.cache.Inputs)+len(seq.pendingInputs)+minBatch) > s.cache.numCtx {
|
|
if len(seq.pendingInputs) != 0 {
|
|
break
|
|
}
|
|
|
|
err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
batchInputs = append(batchInputs, inp.Token)
|
|
if inp.Multimodal != nil {
|
|
batch.Multimodal = append(batch.Multimodal, input.MultimodalIndex{Index: len(batchInputs) - 1, Multimodal: inp.Multimodal})
|
|
}
|
|
|
|
batch.Positions = append(batch.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
|
|
batch.Sequences = append(batch.Sequences, seq.cache.Id)
|
|
|
|
seq.iBatch = len(batch.Outputs)
|
|
if j+1 == len(seq.inputs) {
|
|
batch.Outputs = append(batch.Outputs, int32(len(batchInputs)-1))
|
|
}
|
|
seq.pendingInputs = append(seq.pendingInputs, inp)
|
|
}
|
|
|
|
seq.inputs = seq.inputs[len(seq.pendingInputs):]
|
|
}
|
|
|
|
if len(batchInputs) == 0 {
|
|
return nil
|
|
}
|
|
|
|
ctx := s.model.Backend().NewContext()
|
|
defer ctx.Close()
|
|
|
|
modelOutput, err := model.Forward(ctx, s.model, batchInputs, batch)
|
|
if err != nil {
|
|
return fmt.Errorf("failed to decode batch: %w", err)
|
|
}
|
|
|
|
logits := modelOutput.Floats()
|
|
|
|
for i, seq := range s.seqs {
|
|
if seq == nil {
|
|
continue
|
|
}
|
|
|
|
// After calling Forward, pending inputs are now in the cache
|
|
if len(seq.pendingInputs) > 0 {
|
|
seq.cache.Inputs = append(seq.cache.Inputs, seq.pendingInputs...)
|
|
seq.pendingInputs = []input.Input{}
|
|
}
|
|
|
|
// don't sample prompt processing
|
|
if len(seq.inputs) != 0 {
|
|
if !s.cache.enabled {
|
|
return errors.New("caching disabled but unable to fit entire input in a batch")
|
|
}
|
|
continue
|
|
}
|
|
|
|
seq.numPredicted++
|
|
if seq.numPredicted == 1 {
|
|
seq.startGenerationTime = time.Now()
|
|
}
|
|
|
|
// if done processing the prompt, generate an embedding and return
|
|
if seq.embeddingOnly {
|
|
// TODO(jessegross): Embedding support
|
|
slog.Warn("generation of embedding outputs not yet supported")
|
|
s.removeSequence(i, "")
|
|
continue
|
|
}
|
|
|
|
// sample a token
|
|
vocabSize := len(logits) / len(batch.Outputs)
|
|
|
|
token, err := seq.sampler.Sample(logits[seq.iBatch*vocabSize : (seq.iBatch+1)*vocabSize])
|
|
if err != nil {
|
|
return fmt.Errorf("failed to sample token: %w", err)
|
|
}
|
|
|
|
if seq.sampler.JSONSampler != nil {
|
|
_, err = seq.sampler.JSONSampler.UpdateState([]int32{token})
|
|
if err != nil {
|
|
return fmt.Errorf("failed to update state: %w", err)
|
|
}
|
|
}
|
|
|
|
if seq.sampler.PythonSampler != nil {
|
|
err = seq.sampler.PythonSampler.UpdateState(token)
|
|
if err != nil {
|
|
return fmt.Errorf("failed to update state: %w", err)
|
|
}
|
|
}
|
|
|
|
// if it's an end of sequence token, break
|
|
if s.model.(model.TextProcessor).Is(token, model.SpecialEOS) {
|
|
// TODO (jmorganca): we should send this back
|
|
// as it's important for the /api/generate context
|
|
// seq.responses <- piece
|
|
|
|
s.removeSequence(i, "stop")
|
|
continue
|
|
}
|
|
|
|
piece, err := s.model.(model.TextProcessor).Decode([]int32{token})
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
seq.inputs = []input.Input{{Token: token}}
|
|
|
|
seq.pendingResponses = append(seq.pendingResponses, piece)
|
|
sequence := strings.Join(seq.pendingResponses, "")
|
|
|
|
if ok, stop := common.FindStop(sequence, seq.stop); ok {
|
|
slog.Debug("hit stop token", "pending", seq.pendingResponses, "stop", stop)
|
|
|
|
var tokenTruncated bool
|
|
origLen := len(seq.pendingResponses)
|
|
seq.pendingResponses, tokenTruncated = common.TruncateStop(seq.pendingResponses, stop)
|
|
newLen := len(seq.pendingResponses)
|
|
|
|
// Update the cache based on the tokens that will be returned:
|
|
// - We have 1 token more than is currently in the cache because
|
|
// the last one generated wasn't submitted to Decode
|
|
// - Remove any stop sequences that we stripped out
|
|
// - If truncateStop removed a portion of a token, drop that
|
|
// - As defense-in-depth, if truncatedToken didn't find a stop token
|
|
// remove the extra one that we added to the cache len
|
|
tokenLen := len(seq.cache.Inputs) + 1
|
|
tokenLen -= origLen - newLen
|
|
if tokenTruncated || origLen == newLen {
|
|
tokenLen--
|
|
}
|
|
seq.cache.Inputs = seq.cache.Inputs[:tokenLen]
|
|
|
|
s.removeSequence(i, "stop")
|
|
continue
|
|
}
|
|
|
|
if common.ContainsStopSuffix(sequence, seq.stop) {
|
|
continue
|
|
}
|
|
|
|
if common.IncompleteUnicode(sequence) {
|
|
continue
|
|
}
|
|
|
|
if !flushPending(seq) {
|
|
s.removeSequence(i, "connection")
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
|
|
var req llm.CompletionRequest
|
|
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
|
|
http.Error(w, "Bad request", http.StatusBadRequest)
|
|
return
|
|
}
|
|
|
|
if req.Options == nil {
|
|
opts := api.DefaultOptions()
|
|
req.Options = &opts
|
|
}
|
|
|
|
// Set the headers to indicate streaming
|
|
w.Header().Set("Content-Type", "application/json")
|
|
w.Header().Set("Transfer-Encoding", "chunked")
|
|
|
|
flusher, ok := w.(http.Flusher)
|
|
if !ok {
|
|
http.Error(w, "Streaming not supported", http.StatusInternalServerError)
|
|
return
|
|
}
|
|
|
|
var grammar *sample.Grammar
|
|
var err error
|
|
if req.Grammar != "" {
|
|
grammar, err = sample.NewGrammar(s.vocab, req.Grammar)
|
|
if err != nil {
|
|
http.Error(w, "failed to load model vocabulary required for format", http.StatusInternalServerError)
|
|
return
|
|
}
|
|
}
|
|
|
|
// jsonSampler, err := sample.NewJSONSampler(s.model.(model.TextProcessor), nil)
|
|
// if err != nil {
|
|
// http.Error(w, "failed to load model vocabulary required for format", http.StatusInternalServerError)
|
|
// return
|
|
// }
|
|
// jsonSampler = nil
|
|
pythonSampler := &sample.PythonSampler{}
|
|
functions := []sample.PythonFunction{
|
|
{
|
|
Name: "add_two_strings",
|
|
Args: []string{"s1", "s2"},
|
|
Types: []string{"string", "string"},
|
|
},
|
|
}
|
|
pythonSampler.Init(functions, s.model.(model.TextProcessor))
|
|
sampler := sample.NewSampler(
|
|
req.Options.Temperature,
|
|
req.Options.TopK,
|
|
req.Options.TopP,
|
|
req.Options.MinP,
|
|
req.Options.Seed,
|
|
grammar,
|
|
nil,
|
|
pythonSampler,
|
|
// nil,
|
|
)
|
|
|
|
seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
|
|
numPredict: req.Options.NumPredict,
|
|
stop: req.Options.Stop,
|
|
numKeep: int32(req.Options.NumKeep),
|
|
sampler: sampler,
|
|
embedding: false,
|
|
})
|
|
if err != nil {
|
|
http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
|
|
return
|
|
}
|
|
|
|
// Ensure there is a place to put the sequence, released when removed from s.seqs
|
|
if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
|
|
if errors.Is(err, context.Canceled) {
|
|
slog.Info("aborting completion request due to client closing the connection")
|
|
} else {
|
|
slog.Error("Failed to acquire semaphore", "error", err)
|
|
}
|
|
return
|
|
}
|
|
|
|
s.mu.Lock()
|
|
found := false
|
|
for i, sq := range s.seqs {
|
|
if sq == nil {
|
|
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs)
|
|
if err != nil {
|
|
s.mu.Unlock()
|
|
http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
|
|
return
|
|
}
|
|
|
|
s.seqs[i] = seq
|
|
s.cond.Signal()
|
|
found = true
|
|
break
|
|
}
|
|
}
|
|
s.mu.Unlock()
|
|
|
|
if !found {
|
|
http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
|
|
return
|
|
}
|
|
|
|
for {
|
|
select {
|
|
case <-r.Context().Done():
|
|
close(seq.quit)
|
|
return
|
|
case content, ok := <-seq.responses:
|
|
if ok {
|
|
if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
|
|
Content: content,
|
|
}); err != nil {
|
|
http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
|
|
close(seq.quit)
|
|
return
|
|
}
|
|
|
|
flusher.Flush()
|
|
} else {
|
|
// Send the final response
|
|
doneReason := "stop"
|
|
if seq.doneReason == "limit" {
|
|
doneReason = "length"
|
|
}
|
|
if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
|
|
Done: true,
|
|
DoneReason: doneReason,
|
|
PromptEvalCount: seq.numPromptInputs,
|
|
PromptEvalDuration: seq.startGenerationTime.Sub(seq.startProcessingTime),
|
|
EvalCount: seq.numPredicted,
|
|
EvalDuration: time.Since(seq.startGenerationTime),
|
|
}); err != nil {
|
|
http.Error(w, fmt.Sprintf("failed to encode final response: %v", err), http.StatusInternalServerError)
|
|
}
|
|
|
|
return
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func (s *Server) health(w http.ResponseWriter, r *http.Request) {
|
|
w.Header().Set("Content-Type", "application/json")
|
|
if err := json.NewEncoder(w).Encode(&llm.ServerStatusResponse{
|
|
Status: s.status,
|
|
Progress: s.progress,
|
|
}); err != nil {
|
|
http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
|
|
}
|
|
}
|
|
|
|
type multiLPath []string
|
|
|
|
func (m *multiLPath) Set(value string) error {
|
|
*m = append(*m, value)
|
|
return nil
|
|
}
|
|
|
|
func (m *multiLPath) String() string {
|
|
return strings.Join(*m, ", ")
|
|
}
|
|
|
|
func (s *Server) loadModel(
|
|
ctx context.Context,
|
|
mpath string,
|
|
params ml.BackendParams,
|
|
lpath multiLPath,
|
|
parallel int,
|
|
kvCacheType string,
|
|
kvSize int,
|
|
multiUserCache bool,
|
|
) {
|
|
var err error
|
|
s.model, err = model.New(ctx, mpath, params)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
s.vocab = sample.NewVocab(mpath)
|
|
|
|
// TODO(jessegross): LoRA loading
|
|
if lpath.String() != "" {
|
|
panic("loras are not yet implemented")
|
|
}
|
|
|
|
s.cache, err = NewInputCache(s.model, kvCacheType, int32(kvSize), parallel, s.batchSize, multiUserCache)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
if !s.cache.enabled && parallel > 1 {
|
|
parallel = 1
|
|
slog.Warn("model does not support caching, disabling parallel processing")
|
|
}
|
|
|
|
s.parallel = parallel
|
|
s.seqs = make([]*Sequence, s.parallel)
|
|
s.seqsSem = semaphore.NewWeighted(int64(s.parallel))
|
|
|
|
s.status = llm.ServerStatusReady
|
|
s.ready.Done()
|
|
}
|
|
|
|
func Execute(args []string) error {
|
|
fs := flag.NewFlagSet("runner", flag.ExitOnError)
|
|
mpath := fs.String("model", "", "Path to model binary file")
|
|
parallel := fs.Int("parallel", 1, "Number of sequences to handle simultaneously")
|
|
batchSize := fs.Int("batch-size", 512, "Batch size")
|
|
numGPULayers := fs.Int("n-gpu-layers", 0, "Number of layers to offload to GPU")
|
|
mainGPU := fs.Int("main-gpu", 0, "Main GPU")
|
|
flashAttention := fs.Bool("flash-attn", false, "Enable flash attention")
|
|
kvSize := fs.Int("ctx-size", 2048, "Context (or KV cache) size")
|
|
kvCacheType := fs.String("kv-cache-type", "", "quantization type for KV cache (default: f16)")
|
|
port := fs.Int("port", 8080, "Port to expose the server on")
|
|
threads := fs.Int("threads", runtime.NumCPU(), "Number of threads to use during generation")
|
|
verbose := fs.Bool("verbose", false, "verbose output (default: disabled)")
|
|
_ = fs.Bool("no-mmap", false, "do not memory-map model (slower load but may reduce pageouts if not using mlock)")
|
|
_ = fs.Bool("mlock", false, "force system to keep model in RAM rather than swapping or compressing")
|
|
tensorSplit := fs.String("tensor-split", "", "fraction of the model to offload to each GPU, comma-separated list of proportions")
|
|
multiUserCache := fs.Bool("multiuser-cache", false, "optimize input cache algorithm for multiple users")
|
|
|
|
var lpaths multiLPath
|
|
fs.Var(&lpaths, "lora", "Path to lora layer file (can be specified multiple times)")
|
|
|
|
fs.Usage = func() {
|
|
fmt.Fprintf(fs.Output(), "Runner usage\n")
|
|
fs.PrintDefaults()
|
|
}
|
|
if err := fs.Parse(args); err != nil {
|
|
return err
|
|
}
|
|
level := slog.LevelInfo
|
|
if *verbose {
|
|
level = slog.LevelDebug
|
|
}
|
|
handler := slog.NewTextHandler(os.Stderr, &slog.HandlerOptions{
|
|
Level: level,
|
|
AddSource: true,
|
|
ReplaceAttr: func(_ []string, attr slog.Attr) slog.Attr {
|
|
if attr.Key == slog.SourceKey {
|
|
source := attr.Value.Any().(*slog.Source)
|
|
source.File = filepath.Base(source.File)
|
|
}
|
|
return attr
|
|
},
|
|
})
|
|
slog.SetDefault(slog.New(handler))
|
|
slog.Info("starting ollama engine")
|
|
|
|
server := &Server{
|
|
batchSize: *batchSize,
|
|
status: llm.ServerStatusLoadingModel,
|
|
}
|
|
|
|
// TODO(jessegross): Parameters that need to be implemented:
|
|
// no-mmap
|
|
// mlock
|
|
|
|
var tensorSplitFloats []float32
|
|
if *tensorSplit != "" {
|
|
splits := strings.Split(*tensorSplit, ",")
|
|
tensorSplitFloats = make([]float32, len(splits))
|
|
for i, s := range splits {
|
|
f, _ := strconv.ParseFloat(s, 32)
|
|
tensorSplitFloats[i] = float32(f)
|
|
}
|
|
}
|
|
|
|
params := ml.BackendParams{
|
|
Progress: func(progress float32) {
|
|
server.progress = progress
|
|
},
|
|
NumThreads: *threads,
|
|
NumGPULayers: *numGPULayers,
|
|
MainGPU: *mainGPU,
|
|
TensorSplit: tensorSplitFloats,
|
|
FlashAttention: *flashAttention,
|
|
}
|
|
|
|
server.ready.Add(1)
|
|
ctx, cancel := context.WithCancel(context.Background())
|
|
defer cancel()
|
|
|
|
go server.loadModel(ctx, *mpath, params, lpaths, *parallel, *kvCacheType, *kvSize, *multiUserCache)
|
|
|
|
server.cond = sync.NewCond(&server.mu)
|
|
|
|
go server.run(ctx)
|
|
|
|
addr := "127.0.0.1:" + strconv.Itoa(*port)
|
|
listener, err := net.Listen("tcp", addr)
|
|
if err != nil {
|
|
fmt.Println("Listen error:", err)
|
|
return err
|
|
}
|
|
defer listener.Close()
|
|
|
|
mux := http.NewServeMux()
|
|
// TODO: support embeddings
|
|
mux.HandleFunc("POST /embedding", func(w http.ResponseWriter, r *http.Request) {
|
|
http.Error(w, "this model does not support embeddings", http.StatusNotImplemented)
|
|
})
|
|
|
|
mux.HandleFunc("POST /completion", server.completion)
|
|
mux.HandleFunc("GET /health", server.health)
|
|
|
|
httpServer := http.Server{
|
|
Handler: mux,
|
|
}
|
|
|
|
log.Println("Server listening on", addr)
|
|
if err := httpServer.Serve(listener); err != nil {
|
|
log.Fatal("server error:", err)
|
|
return err
|
|
}
|
|
|
|
return nil
|
|
}
|