Files
ollama/ml/backend/ggml/ggml.go
Daniel Hiltgen 27f1fde413 discovery: only retry AMD GPUs (#12894)
* discovery: only retry AMD GPUs

CUDA and Vulkan don't crash on unsupported devices, so retry isn't necessary.
This also refactors the code to shift the Library specific logic into the ml
package.

* review comments
2025-11-04 15:33:46 -08:00

1741 lines
44 KiB
Go

package ggml
// #cgo linux LDFLAGS: -lrt -lpthread -ldl -lstdc++ -lm
// #cgo windows LDFLAGS: -lpthread
// #cgo CPPFLAGS: -I${SRCDIR}/ggml/include
// #include <stdlib.h>
// #include <stdint.h>
// #include "ggml.h"
// #include "ggml-cpu.h"
// #include "ggml-backend.h"
import "C"
import (
"cmp"
"context"
"encoding/binary"
"errors"
"fmt"
"io"
"log/slog"
"maps"
"os"
"runtime"
"slices"
"strconv"
"strings"
"sync"
"sync/atomic"
"unicode"
"unsafe"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/fs"
fsggml "github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/logutil"
"github.com/ollama/ollama/ml"
ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
"github.com/ollama/ollama/ml/nn/rope"
"golang.org/x/sync/errgroup"
)
var (
cpus, accels, gpus []C.ggml_backend_dev_t
backends map[C.ggml_backend_dev_t]C.ggml_backend_t
)
var initDevices = sync.OnceFunc(func() {
ggml.OnceLoad()
backends = make(map[C.ggml_backend_dev_t]C.ggml_backend_t)
for i := range C.ggml_backend_dev_count() {
d := C.ggml_backend_dev_get(i)
switch C.ggml_backend_dev_type(d) {
case C.GGML_BACKEND_DEVICE_TYPE_CPU:
if len(cpus) == 0 {
// only the first cpu device should be used
cpus = append(cpus, d)
}
case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
accels = append(accels, d)
case C.GGML_BACKEND_DEVICE_TYPE_GPU,
C.GGML_BACKEND_DEVICE_TYPE_IGPU:
gpus = append(gpus, d)
}
backends[d] = C.ggml_backend_dev_init(d, nil)
}
})
type layerDevice struct {
d C.ggml_backend_dev_t
bt C.ggml_backend_buffer_type_t
}
type Backend struct {
// modelPath is the location of the model data
modelPath string
meta *fsggml.GGML
// allocMemory means that memory should be allocated for tensors and not
// just a dry run
allocMemory bool
// tensorLoadTargets maps from the name of the tensor in the file
// to the name that is used by the model definition
tensorLoadTargets map[string][]string
schedMu sync.Mutex // Only one Compute can run at a time
sched C.ggml_backend_sched_t
schedBackends []C.ggml_backend_t
schedBufts []C.ggml_backend_buffer_type_t
tensors map[string]*C.struct_ggml_tensor
// input is the backend buffer type used for inputs
input C.ggml_backend_buffer_type_t
// output is the backend device used for outputs
output C.ggml_backend_dev_t
// layers is the backend used for repeating layers
layers map[int]layerDevice
// requiredMemory is the cumulative memory allocations needed by the backend
requiredMemory *ml.BackendMemory
// btDeviceMemory maps from a buffer type to the memory allocations associated with that device
btDeviceMemory map[C.ggml_backend_buffer_type_t]*ml.DeviceMemory
flashAttention bool
// maxGraphNodes is the maximum allowed number of graph nodes in this scheduler
maxGraphNodes int
// weightBuffers are the GGML contexts and buffers for allocating weights
weightBuffers map[*C.struct_ggml_context]C.ggml_backend_buffer_t
}
var once sync.Once
func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
r, err := os.Open(modelPath)
if err != nil {
return nil, err
}
defer r.Close()
meta, err := fsggml.Decode(r, -1)
if err != nil {
return nil, err
}
once.Do(func() {
slog.Info(
"",
"architecture", meta.KV().Architecture(),
"file_type", meta.KV().FileType(),
"name", meta.KV().String("general.name"),
"description", meta.KV().String("general.description"),
"num_tensors", len(meta.Tensors().Items()),
"num_key_values", len(meta.KV()),
)
})
initDevices()
var requiredMemory ml.BackendMemory
btDeviceMemory := make(map[C.ggml_backend_buffer_type_t]*ml.DeviceMemory)
type deviceBufferType struct {
d C.ggml_backend_dev_t
bts []C.ggml_backend_buffer_type_t
}
blocks := int(meta.KV().BlockCount())
// create list of buffer types for the cpu
cpuDeviceBufferType := deviceBufferType{d: C.ggml_backend_dev_by_type(C.GGML_BACKEND_DEVICE_TYPE_CPU)}
for _, d := range append(accels, append(gpus, cpus...)...) {
switch C.ggml_backend_dev_type(d) {
case C.GGML_BACKEND_DEVICE_TYPE_CPU,
C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
bt := C.ggml_backend_dev_buffer_type(d)
cpuDeviceBufferType.bts = append(cpuDeviceBufferType.bts, bt)
btDeviceMemory[C.ggml_backend_dev_buffer_type(d)] = &requiredMemory.CPU
}
}
requiredMemory.CPU.Name = C.GoString(C.ggml_backend_dev_name(cpuDeviceBufferType.d))
var props C.struct_ggml_backend_dev_props
C.ggml_backend_dev_get_props(cpuDeviceBufferType.d, &props)
requiredMemory.CPU.ID = C.GoString(props.id)
requiredMemory.CPU.Library = C.GoString(props.library)
requiredMemory.CPU.Weights = make([]uint64, blocks+1)
requiredMemory.CPU.Cache = make([]uint64, blocks+1)
// create list of buffer types for each gpu
var gpuDeviceBufferTypes []deviceBufferType
requiredMemory.GPUs = make([]ml.DeviceMemory, len(gpus))
for i, d := range gpus {
bt := C.ggml_backend_dev_buffer_type(d)
gpuDeviceBufferTypes = append(gpuDeviceBufferTypes, deviceBufferType{
d: d,
bts: append([]C.ggml_backend_buffer_type_t{bt}, cpuDeviceBufferType.bts...),
})
btDeviceMemory[bt] = &requiredMemory.GPUs[i]
requiredMemory.GPUs[i].Name = C.GoString(C.ggml_backend_dev_name(d))
var props C.struct_ggml_backend_dev_props
C.ggml_backend_dev_get_props(d, &props)
requiredMemory.GPUs[i].ID = C.GoString(props.id)
requiredMemory.GPUs[i].Library = C.GoString(props.library)
requiredMemory.GPUs[i].Weights = make([]uint64, blocks+1)
requiredMemory.GPUs[i].Cache = make([]uint64, blocks+1)
}
// inputs always use cpu
input := cpuDeviceBufferType
assignLayer := func(layer int) deviceBufferType {
for _, p := range params.GPULayers {
for _, l := range p.Layers {
if l == layer {
for i := range requiredMemory.GPUs {
if requiredMemory.GPUs[i].DeviceID == p.DeviceID {
return gpuDeviceBufferTypes[i]
}
}
return cpuDeviceBufferType
}
}
}
return cpuDeviceBufferType
}
// repeating layers are assigned based on their index in reverse order, e.g. i / (block_count + 1)
layers := make([]deviceBufferType, blocks)
for i := range layers {
layers[i] = assignLayer(i)
}
// outputs are assigned iff allowed by splits and configured number of gpu layers
output := assignLayer(blocks)
maxTensors := len(meta.Tensors().Items())
maxTensors += 1
// each layer has at most 2 extra tensors for rope operations
maxTensors += blocks * 2
type tensor struct {
source *fsggml.Tensor
target string
}
// some tensors are mapped to different names so keep a list
targets := make(map[string][]string)
// contexts are shared by tensors of the same buffer type
ctxs := make(map[C.ggml_backend_buffer_type_t]*C.struct_ggml_context)
createTensor := func(t tensor, bts []C.ggml_backend_buffer_type_t, layer int) *C.struct_ggml_tensor {
for _, bt := range bts {
if _, ok := ctxs[bt]; !ok {
ctxs[bt] = C.ggml_init(C.struct_ggml_init_params{
mem_size: C.ggml_tensor_overhead() * C.size_t(maxTensors),
no_alloc: true,
})
}
targets[t.source.Name] = append(targets[t.source.Name], t.target)
name := t.source.Name
if t.target != "" {
name = t.target
}
cname := C.CString(name)
defer C.free(unsafe.Pointer(cname))
if tt := C.ggml_get_tensor(ctxs[bt], cname); tt != nil {
return tt
}
kind := t.source.Kind
if t.source.Kind == 4 {
// transform raw mxfp4 stream to ggml mxfp4 format
kind = 39
} else if t.source.Kind == uint32(fsggml.TensorTypeBF16) && strings.HasSuffix(t.source.Name, "_exps.bias") {
// transform "_exps.bias" from bf16 to fp32; add_ids only supports fp32 tensors
kind = uint32(fsggml.TensorTypeF32)
}
tt := C.ggml_new_tensor(ctxs[bt], kind, C.int(len(t.source.Shape)), (*C.int64_t)(unsafe.Pointer(&t.source.Shape[0])))
C.ggml_set_name(tt, cname)
logutil.Trace("created tensor", "name", name, "shape", t.source.Shape, "dtype", t.source.Kind, "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
size := pad(C.ggml_backend_buft_get_alloc_size(bt, tt), C.ggml_backend_buft_get_alignment(bt))
if layer == -1 {
requiredMemory.InputWeights += uint64(size)
} else {
btDeviceMemory[bt].Weights[layer] += uint64(size)
}
//nolint:staticcheck // TODO: check if buffer type supports this tensor
return tt
}
return nil
}
contains := func(s string, parts ...string) bool {
split := strings.Split(s, ".")
for _, part := range parts {
if slices.Contains(split, part) {
return true
}
}
return false
}
for _, t := range meta.Tensors().Items() {
switch {
case contains(t.Name, "position_embd", "token_embd", "token_norm_embd", "token_types"):
createTensor(tensor{source: t}, input.bts, -1)
if _, ok := meta.Tensors().GroupLayers()["output"]; !ok && t.Name == "token_embd.weight" {
createTensor(tensor{source: t, target: "output.weight"}, output.bts, blocks)
}
case contains(t.Name, "cls", "output", "output_norm",
"altup_proj", "altup_unembd_proj",
"per_layer_token_embd", "per_layer_model_proj", "per_layer_proj_norm"):
createTensor(tensor{source: t}, output.bts, blocks)
case strings.HasPrefix(t.Name, "v.") || strings.HasPrefix(t.Name, "mm."):
// TODO: assign vision tensors to the gpu if possible
createTensor(tensor{source: t}, output.bts, blocks)
case contains(t.Name, "rope_freqs", "rope_factors_long", "rope_factors_short"):
// these tensors should be repeated per layer
for i, layer := range layers {
createTensor(tensor{
source: t,
target: "blk." + strconv.Itoa(i) + "." + t.Name,
}, layer.bts, i)
}
default:
layerIndex := -1
if fields := strings.FieldsFunc(t.Name, func(r rune) bool { return !unicode.IsNumber(r) }); len(fields) > 0 {
if i, err := strconv.Atoi(fields[0]); err == nil {
layerIndex = i
}
}
if layerIndex >= 0 {
createTensor(tensor{source: t}, layers[layerIndex].bts, layerIndex)
} else {
// load all other tensors on the cpu
createTensor(tensor{source: t}, input.bts, -1)
}
}
}
// map tensor names to tensors for easy lookup later
tensors := make(map[string]*C.struct_ggml_tensor)
for _, c := range ctxs {
for t := C.ggml_get_first_tensor(c); t != nil; t = C.ggml_get_next_tensor(c, t) {
tensors[C.GoString(C.ggml_get_name(t))] = t
}
}
// map devices to backend buffer types so new tensors can be assigned to the correct device
deviceBufferTypes := make(map[C.ggml_backend_dev_t]C.ggml_backend_buffer_type_t)
// create backends and buffer types used for the compute graph scheduler
var schedBackends []C.ggml_backend_t
var schedBufts []C.ggml_backend_buffer_type_t
for _, d := range append(gpus, append(accels, cpus...)...) {
b := backends[d]
bt := C.ggml_backend_get_default_buffer_type(b)
// Always include CPU as a fallback but otherwise, just use the devices where we assigned layers
if !slices.Contains(cpuDeviceBufferType.bts, bt) {
if c, ok := ctxs[bt]; !ok || C.ggml_get_first_tensor(c) == nil {
continue
}
}
deviceBufferTypes[d] = bt
schedBackends = append(schedBackends, b)
schedBufts = append(schedBufts, bt)
if C.ggml_backend_is_cpu(b) {
// set number of threads for cpu backend
C.ggml_backend_cpu_set_n_threads(b, C.int(Threads(params.NumThreads)))
}
}
maxGraphNodes := max(1024, len(meta.Tensors().Items())*8)
sched := C.ggml_backend_sched_new_ext(
(*C.ggml_backend_t)(unsafe.Pointer(&schedBackends[0])),
(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&schedBufts[0])),
C.int(len(schedBackends)),
C.size_t(maxGraphNodes),
C._Bool(false),
C._Bool(true),
C._Bool(params.AllocMemory),
)
// allocate buffers for each context
bbs := make(map[*C.struct_ggml_context]C.ggml_backend_buffer_t, len(ctxs))
for bt, c := range ctxs {
if C.ggml_get_first_tensor(c) == nil {
continue
}
b := C.ggml_backend_alloc_ctx_tensors_from_buft(c, bt)
if b == nil {
for _, b := range bbs {
C.ggml_backend_buffer_free(b)
}
for _, ctx := range ctxs {
C.ggml_free(ctx)
}
panic(ml.ErrNoMem{BackendMemory: requiredMemory})
}
C.ggml_backend_buffer_set_usage(b, C.GGML_BACKEND_BUFFER_USAGE_WEIGHTS)
bbs[c] = b
}
for bs := range maps.Values(bbs) {
logutil.Trace("model weights", "buffer", C.GoString(C.ggml_backend_buffer_name(bs)),
"size", format.HumanBytes2(uint64(C.ggml_backend_buffer_get_size(bs))))
}
return &Backend{
modelPath: modelPath,
allocMemory: params.AllocMemory,
flashAttention: params.FlashAttention,
meta: meta,
tensorLoadTargets: targets,
tensors: tensors,
sched: sched,
schedBackends: schedBackends,
schedBufts: schedBufts,
input: deviceBufferTypes[input.d],
output: output.d,
layers: func() map[int]layerDevice {
m := make(map[int]layerDevice)
for i, layer := range layers {
m[i] = layerDevice{
d: layer.d,
bt: deviceBufferTypes[layer.d],
}
}
return m
}(),
requiredMemory: &requiredMemory,
btDeviceMemory: btDeviceMemory,
maxGraphNodes: maxGraphNodes,
weightBuffers: bbs,
}, nil
}
func init() {
ml.RegisterBackend("ggml", New)
}
func (b *Backend) Close() {
if b == nil {
return
}
for ctx, b := range b.weightBuffers {
C.ggml_backend_buffer_free(b)
C.ggml_free(ctx)
}
C.ggml_backend_sched_free(b.sched)
}
func (b *Backend) Load(ctx context.Context, progress func(float32)) error {
if !b.allocMemory {
return errors.New("cannot load model without memory allocation")
}
// Mimic llama runner logs summarizing layers and memory
gpuLayers := 0
for layer := range maps.Values(b.layers) {
switch C.ggml_backend_dev_type(layer.d) {
case C.GGML_BACKEND_DEVICE_TYPE_GPU,
C.GGML_BACKEND_DEVICE_TYPE_IGPU:
gpuLayers++
}
}
slog.Info(fmt.Sprintf("offloading %d repeating layers to GPU", gpuLayers))
switch C.ggml_backend_dev_type(b.output) {
case C.GGML_BACKEND_DEVICE_TYPE_CPU:
slog.Info("offloading output layer to CPU")
case C.GGML_BACKEND_DEVICE_TYPE_GPU,
C.GGML_BACKEND_DEVICE_TYPE_IGPU:
slog.Info("offloading output layer to GPU")
gpuLayers++
case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
slog.Info("offloading output layer to ACCEL")
}
slog.Info(fmt.Sprintf("offloaded %d/%d layers to GPU", gpuLayers, len(b.layers)+1))
var doneBytes atomic.Uint64
totalBytes := uint64(b.meta.Length) - b.meta.Tensors().Offset
g, ctx := errgroup.WithContext(ctx)
g.SetLimit(runtime.GOMAXPROCS(0))
for _, t := range b.meta.Tensors().Items() {
t := t
g.Go(func() error {
tts := make([]*C.struct_ggml_tensor, max(1, len(b.tensorLoadTargets[t.Name])))
for i := range tts {
target := b.tensorLoadTargets[t.Name][i]
if target == "" {
target = t.Name
}
tt, ok := b.tensors[target]
if !ok {
return fmt.Errorf("unassigned tensor: %s", t.Name)
}
tts[i] = tt
}
// Create a new FD for each goroutine so that each FD is read sequentially, rather than
// seeking around within an FD shared between all goroutines.
file, err := os.Open(b.modelPath)
if err != nil {
slog.Warn("file open error", "file", b.modelPath, "error", err)
return err
}
defer file.Close()
sr := io.NewSectionReader(file, int64(b.meta.Tensors().Offset+t.Offset), int64(t.Size()))
if t.Kind == 4 && tts[0]._type == 39 {
// source is mxfp4, target is ggml mxfp4
const BS = 17 // MXFP4 block size
bts := make([]byte, 8*BS*format.KibiByte) // ~128k block aligned
var s uint64
var tmp [16]byte
for s < t.Size() {
// Stop if either the parent context has been canceled or if any of the other tensors returned an error
if err := ctx.Err(); err != nil {
return err
}
n, err := io.ReadFull(sr, bts[:min(len(bts), int(t.Size()-s))])
if err != nil {
slog.Warn("file read error", "file", b.modelPath, "error", err)
return err
}
for j := range n / BS {
for i := 1; i < 9; i++ {
// transform a1b2c3 ... x7y8z9 -> 71xa82yb93zc
a, b := bts[j*BS+i], bts[j*BS+i+8]
tmp[2*(i-1)] = (a & 0x0F) | (b << 4)
tmp[2*(i-1)+1] = (a >> 4) | (b & 0xF0)
}
copy(bts[j*BS+1:j*BS+17], tmp[:])
}
for _, tt := range tts {
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), C.size_t(s), C.size_t(n))
}
s += uint64(n)
if progress != nil {
done := doneBytes.Add(uint64(n))
progress(float32(done) / float32(totalBytes))
}
}
return nil
} else if strings.HasSuffix(t.Name, "_exps.bias") && t.Kind == 30 && tts[0]._type == 0 {
// source is bf16, target is ggml fp32
// data is bf16 but we need to convert to fp32
bts := make([]byte, 128*format.KibiByte)
var e uint64
for e < t.Elements() {
// Stop if either the parent context has been canceled or if any of the other tensors returned an error
if err := ctx.Err(); err != nil {
return err
}
n, err := io.ReadFull(sr, bts[:min(len(bts), int(t.Elements()-e)*2)])
if err != nil {
slog.Warn("file read error", "file", b.modelPath, "error", err)
return err
}
fp32 := ConvertToF32(bts, uint32(fsggml.TensorTypeBF16), uint64(n/2))
for _, tt := range tts {
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&fp32[0]), C.size_t(e*4), C.size_t(n*2))
}
e += uint64(n / 2)
if progress != nil {
done := doneBytes.Add(uint64(n))
progress(float32(done) / float32(totalBytes))
}
}
return nil
}
bts := make([]byte, 128*format.KibiByte)
var s uint64
for s < t.Size() {
// Stop if either the parent context has been canceled or if any of the other tensors returned an error
if err := ctx.Err(); err != nil {
return err
}
n, err := io.ReadFull(sr, bts[:min(len(bts), int(t.Size()-s))])
if err != nil {
slog.Warn("file read error", "file", b.modelPath, "error", err)
return err
}
for _, tt := range tts {
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), C.size_t(s), C.size_t(n))
}
s += uint64(n)
if progress != nil {
done := doneBytes.Add(uint64(n))
progress(float32(done) / float32(totalBytes))
}
}
return nil
})
}
// Cleanup any backend state from devices that we didn't end up using
nextDevice:
for _, d := range append(gpus, append(accels, cpus...)...) {
for _, backend := range b.schedBackends {
if d == C.ggml_backend_get_device(backend) {
continue nextDevice
}
}
C.ggml_backend_dev_reset(d)
}
if err := g.Wait(); err != nil {
return err
}
return nil
}
func (b *Backend) BackendMemory() ml.BackendMemory {
return *b.requiredMemory
}
func (b *Backend) Config() fs.Config {
return b.meta.KV()
}
func (b *Backend) Get(name string) ml.Tensor {
if t, ok := b.tensors[name]; ok {
return &Tensor{b: b, t: t}
}
return nil
}
func (b *Backend) NewContext() ml.Context {
return b.NewContextSize(b.maxGraphNodes)
}
func (b *Backend) NewContextSize(n int) ml.Context {
if n > b.maxGraphNodes {
panic(fmt.Errorf("requested number of graph nodes (%v) for new context exceeds maximum (%v)", n, b.maxGraphNodes))
}
var allocatedBuffers []C.ggml_backend_buffer_t
return &Context{
b: b,
maxGraphNodes: n,
ctx: C.ggml_init(C.struct_ggml_init_params{
mem_size: C.size_t(n)*C.ggml_tensor_overhead() + C.ggml_graph_overhead_custom(C.size_t(n), false),
no_alloc: true,
}),
allocatedBuffers: &allocatedBuffers,
layer: -1,
}
}
func (b *Backend) CacheConfig() ml.CacheConfig {
if b.flashAttention {
return ml.CacheConfig{CachePadding: 256, MaskDType: ml.DTypeF16, MaskBatchPadding: C.GGML_KQ_MASK_PAD}
} else {
return ml.CacheConfig{CachePadding: 32, PermutedV: true}
}
}
func (b *Backend) BackendDevices() []ml.DeviceInfo {
deviceInfos := []ml.DeviceInfo{}
for _, dev := range gpus {
// If we have a model loaded, and it's only loaded on a subset of the devices
// skip idle/unused devices to avoid initializing them and causing VRAM allocations
if b.allocMemory {
idleDev := true
for _, backend := range b.schedBackends {
if dev == C.ggml_backend_get_device(backend) {
idleDev = false
break
}
}
if idleDev {
slog.Debug("skipping unused backend device", "description", C.GoString(C.ggml_backend_dev_description(dev)))
continue
}
}
info := ml.DeviceInfo{}
props := C.struct_ggml_backend_dev_props{}
C.ggml_backend_dev_get_props(dev, &props)
info.Name = C.GoString(props.name)
info.Description = C.GoString(props.description)
info.ID = C.GoString(props.id)
info.Library = C.GoString(props.library)
info.ComputeMajor = (int)(props.compute_major)
info.ComputeMinor = (int)(props.compute_minor)
info.DriverMajor = (int)(props.driver_major)
info.DriverMinor = (int)(props.driver_minor)
info.Integrated = props.integrated != 0
if props.library != nil {
info.Library = C.GoString(props.library)
}
if props.device_id != nil {
info.PCIID = C.GoString(props.device_id)
}
info.LibraryPath = ggml.LibPaths()
C.ggml_backend_dev_memory(dev, &props.memory_free, &props.memory_total)
info.TotalMemory = (uint64)(props.memory_total)
info.FreeMemory = (uint64)(props.memory_free)
deviceInfos = append(deviceInfos, info)
}
return deviceInfos
}
type Context struct {
b *Backend
ctx *C.struct_ggml_context
graph *C.struct_ggml_cgraph
// batchSize is a hint to optimize processing
batchSize int
// buft is the buffer type used for new tensors
buft C.ggml_backend_buffer_type_t
// allocatedBuffers are buffers for tensors that we have allocated in this context
// so that we can free them when we close the context
allocatedBuffers *[]C.ggml_backend_buffer_t
// maxGraphNodes is the maximum allowed number of graph nodes in this context
maxGraphNodes int
// layer is the graph layer that this context is allocating for - assumed to be cache
layer int
}
func (c *Context) Input() ml.Context {
if c.b.input != nil {
return &Context{
b: c.b,
ctx: c.ctx,
buft: c.b.input,
allocatedBuffers: c.allocatedBuffers,
maxGraphNodes: c.maxGraphNodes,
layer: -1,
}
}
return c
}
func (c *Context) Layer(i int) ml.Context {
if layer, ok := c.b.layers[i]; ok {
return &Context{
b: c.b,
ctx: c.ctx,
buft: layer.bt,
allocatedBuffers: c.allocatedBuffers,
maxGraphNodes: c.maxGraphNodes,
layer: i,
}
}
return c
}
func (c *Context) Forward(tensors ...ml.Tensor) ml.Context {
if c.graph == nil {
c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.maxGraphNodes), false)
}
for _, tensor := range tensors {
C.ggml_build_forward_expand(c.graph, tensor.(*Tensor).t)
}
return c
}
func (c *Context) SetBatchSize(batchSize int) {
c.batchSize = batchSize
}
func (c *Context) Compute(tensors ...ml.Tensor) {
c.ComputeWithNotify(nil, tensors...)
}
func (c *Context) ComputeWithNotify(cb func(), tensors ...ml.Tensor) {
c.b.schedMu.Lock()
defer c.b.schedMu.Unlock()
if cb != nil {
go cb()
}
if c.batchSize > 0 {
C.ggml_backend_sched_set_batch_size(c.b.sched, C.int(c.batchSize))
}
if status := C.ggml_backend_sched_graph_compute_async(c.b.sched, c.graph); status != C.GGML_STATUS_SUCCESS {
panic(fmt.Errorf("error computing ggml graph: %v", status))
}
C.ggml_backend_sched_reset(c.b.sched)
needSync := true
sync := func() {
if needSync {
C.ggml_backend_sched_synchronize(c.b.sched)
needSync = false
}
}
for _, t := range tensors {
if C.ggml_nbytes(t.(*Tensor).t) > 0 {
t.(*Tensor).sync = sync
}
}
}
func (c *Context) Reserve() {
if c.batchSize > 0 {
C.ggml_backend_sched_set_batch_size(c.b.sched, C.int(c.batchSize))
}
reserved := C.ggml_backend_sched_reserve(c.b.sched, c.graph)
slog.Debug("compute graph", "nodes", C.ggml_graph_n_nodes(c.graph), "splits", C.ggml_backend_sched_get_n_splits(c.b.sched))
// Reserve may get called multiple times for different graphs - we just want the last run, which will contain the max allocations
for _, bt := range c.b.schedBufts {
c.b.btDeviceMemory[bt].Graph = 0
}
for i := range c.b.schedBackends {
bufferSize := C.ggml_backend_sched_get_attempted_buffer_size(c.b.sched, c.b.schedBackends[i])
c.b.btDeviceMemory[c.b.schedBufts[i]].Graph += uint64(bufferSize)
logutil.Trace("compute graph", "backend", C.GoString(C.ggml_backend_name(c.b.schedBackends[i])),
"buffer_type", C.GoString(C.ggml_backend_buft_name(c.b.schedBufts[i])), "size", format.HumanBytes2(uint64(bufferSize)))
}
if !reserved {
panic(ml.ErrNoMem{BackendMemory: *c.b.requiredMemory})
}
}
func (c *Context) MaxGraphNodes() int {
return c.maxGraphNodes
}
func shapeToGGML(shape []int) *C.int64_t {
sh := make([]C.int64_t, len(shape))
for i, s := range shape {
sh[i] = C.int64_t(s)
}
return &sh[0]
}
func pad(length, pad C.size_t) C.size_t {
return ((length + pad - 1) / pad) * pad
}
func (c *Context) newTensor(dtype ml.DType, shape []int) *Tensor {
if c.buft == nil {
panic("set Input or Layer before creating tensors")
}
cdtype := ggmlDType(dtype)
if len(shape) < 1 || shape[0] == 0 {
var shape C.int64_t = 0
return &Tensor{b: c.b, t: C.ggml_new_tensor(c.ctx, cdtype, 1, &shape)}
} else if len(shape) > 4 {
panic("unsupported number of dimensions")
}
for _, dim := range shape {
if dim < 1 {
panic("invalid shape")
}
}
t := C.ggml_new_tensor(c.ctx, cdtype, C.int(len(shape)), shapeToGGML(shape))
size := pad(C.ggml_backend_buft_get_alloc_size(c.buft, t), C.ggml_backend_buft_get_alignment(c.buft))
b := C.ggml_backend_buft_alloc_buffer(c.buft, size)
if c.layer >= 0 {
c.b.btDeviceMemory[c.buft].Cache[c.layer] += uint64(size)
}
if b == nil {
panic(ml.ErrNoMem{BackendMemory: *c.b.requiredMemory})
}
*c.allocatedBuffers = append(*c.allocatedBuffers, b)
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
return &Tensor{b: c.b, t: t}
}
func (c *Context) Empty(dtype ml.DType, shape ...int) ml.Tensor {
return c.newTensor(dtype, shape)
}
func (c *Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
t := c.newTensor(dtype, shape)
if c.b.allocMemory {
C.ggml_set_zero(t.t)
}
return t
}
func checkShape[S ~[]E, E any](s S, shape ...int) {
n := len(s)
if n == 0 {
return
}
for _, v := range shape {
n /= v
}
if n != 1 {
panic(fmt.Errorf("invalid shape: %v", shape))
}
}
func (c Context) FromBytes(dtype ml.DType, s []uint8, shape ...int) ml.Tensor {
// Unchecked to handle quantized types
t := c.newTensor(dtype, shape)
if c.b.allocMemory {
t.FromBytes(s)
}
return t
}
func (c *Context) FromFloats(s []float32, shape ...int) ml.Tensor {
checkShape(s, shape...)
t := c.newTensor(ml.DTypeF32, shape)
if c.b.allocMemory {
t.FromFloats(s)
}
return t
}
func (c *Context) FromInts(s []int32, shape ...int) ml.Tensor {
checkShape(s, shape...)
t := c.newTensor(ml.DTypeI32, shape)
if c.b.allocMemory {
t.FromInts(s)
}
return t
}
func (c Context) Arange(start, stop, step float32, dtype ml.DType) ml.Tensor {
switch dtype {
case ml.DTypeF32:
// ggml_arange creates a float32 tensor
return &Tensor{
b: c.b,
t: C.ggml_arange(c.ctx, C.float(start), C.float(stop), C.float(step)),
}
case ml.DTypeI32:
// ggml_cast does not support float32 to int32 conversion
arange := make([]int32, 0, int((stop-start)/step))
for i := start; i < stop; i += step {
arange = append(arange, int32(i))
}
return c.Input().FromInts(arange, len(arange))
default:
panic("unsupported dtype for arange")
}
}
func (c *Context) Close() {
if c != nil {
for _, b := range *c.allocatedBuffers {
C.ggml_backend_buffer_free(b)
}
*c.allocatedBuffers = nil
C.ggml_free(c.ctx)
}
}
type Tensor struct {
b *Backend
t *C.struct_ggml_tensor
sync func()
}
func (t *Tensor) LogValue() slog.Value {
return slog.GroupValue(
slog.String("name", C.GoString(C.ggml_get_name(t.t))),
slog.String("type", C.GoString(C.ggml_type_name(t.t._type))),
slog.Any("shape", t.Shape()),
)
}
func (t *Tensor) Dim(n int) int {
return int(t.t.ne[n])
}
func (t *Tensor) Stride(n int) int {
return int(t.t.nb[n])
}
func (t *Tensor) Shape() []int {
shape := make([]int, C.ggml_n_dims(t.t))
for i := range shape {
shape[i] = t.Dim(i)
}
return shape
}
func (t *Tensor) Bytes() (data []byte) {
if t.sync != nil {
data = make([]byte, C.ggml_nbytes(t.t))
t.sync()
C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
}
return
}
func (t *Tensor) Floats() (data []float32) {
if t.sync != nil {
data = make([]float32, C.ggml_nelements(t.t))
t.sync()
C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
}
return
}
func tensorSet[S ~[]E, E byte | float32 | int32](t *Tensor, s S) {
if len(s) == 0 {
return
}
if int(C.ggml_nbytes(t.t)) != len(s)*binary.Size(s[0]) {
panic("data size does not match tensor size")
}
C.ggml_backend_tensor_set(t.t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.t))
}
func (t *Tensor) FromBytes(s []byte) {
tensorSet(t, s)
}
func (t *Tensor) FromFloats(s []float32) {
tensorSet(t, s)
}
func (t *Tensor) FromInts(s []int32) {
tensorSet(t, s)
}
func (t *Tensor) DType() ml.DType {
switch t.t._type {
case C.GGML_TYPE_F32:
return ml.DTypeF32
case C.GGML_TYPE_F16:
return ml.DTypeF16
case C.GGML_TYPE_Q8_0:
return ml.DTypeQ80
case C.GGML_TYPE_Q4_0:
return ml.DTypeQ40
case C.GGML_TYPE_I32:
return ml.DTypeI32
case C.GGML_TYPE_MXFP4:
return ml.DTypeMXFP4
default:
return ml.DTypeOther
}
}
func ggmlDType(dtype ml.DType) uint32 {
switch dtype {
case ml.DTypeF32:
return C.GGML_TYPE_F32
case ml.DTypeF16:
return C.GGML_TYPE_F16
case ml.DTypeQ80:
return C.GGML_TYPE_Q8_0
case ml.DTypeQ40:
return C.GGML_TYPE_Q4_0
case ml.DTypeI32:
return C.GGML_TYPE_I32
case ml.DTypeMXFP4:
return C.GGML_TYPE_MXFP4
default:
panic("unsupported dtype")
}
}
func (t *Tensor) Cast(ctx ml.Context, dtype ml.DType) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_cast(ctx.(*Context).ctx, t.t, ggmlDType(dtype)),
}
}
func (t *Tensor) Neg(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_neg(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_add(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Sub(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_sub(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Repeat(ctx ml.Context, dim, n int) ml.Tensor {
if dim < 0 || dim >= C.GGML_MAX_DIMS {
panic("invalid dimension")
}
shape := make([]C.int64_t, C.GGML_MAX_DIMS)
for i := range C.GGML_MAX_DIMS {
if i == dim {
shape[i] = C.int64_t(t.Dim(i) * n)
} else {
shape[i] = C.int64_t(t.Dim(i))
}
}
tmpl := C.ggml_new_tensor(ctx.(*Context).ctx, t.t._type, C.int(len(shape)), unsafe.SliceData(shape))
return &Tensor{
b: t.b,
t: C.ggml_repeat(ctx.(*Context).ctx, t.t, tmpl),
}
}
func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
if len(s) > 0 {
return t.Concat(ctx, s[0].Stack(ctx, dim, s[1:]...), dim)
}
return t
}
func (t *Tensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_concat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(dim)),
}
}
func (t *Tensor) Contiguous(ctx ml.Context, shape ...int) ml.Tensor {
if slices.Contains(shape, -1) {
inferShape(t, shape)
}
switch len(shape) {
case 0:
return &Tensor{
b: t.b,
t: C.ggml_cont(ctx.(*Context).ctx, t.t),
}
case 1:
return &Tensor{
b: t.b,
t: C.ggml_cont_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
}
case 2:
return &Tensor{
b: t.b,
t: C.ggml_cont_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
}
case 3:
return &Tensor{
b: t.b,
t: C.ggml_cont_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
}
case 4:
return &Tensor{
b: t.b,
t: C.ggml_cont_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
}
default:
panic("unsupported number of dimensions")
}
}
func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_mul(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Div(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_div(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
// Mulmat performs matrix multiplication between two tensors.
// If t has shape [m, p, ...] and t2 has shape [m, n, ...],
// Mulmat returns a new Tensor with shape [p, n, ...].
//
// Note: this is similar to matmul(t2, t.tranpose(-1, -2)) in other libraries.
func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
mul := C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t)
C.ggml_mul_mat_set_prec(mul, C.GGML_PREC_F32)
return &Tensor{
b: t.b,
t: mul,
}
}
func (t *Tensor) MulmatID(ctx ml.Context, t2, ids ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_mul_mat_id(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, ids.(*Tensor).t),
}
}
func (t *Tensor) AddID(ctx ml.Context, t2, ids ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_add_id(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, ids.(*Tensor).t),
}
}
func (t *Tensor) L2Norm(ctx ml.Context, eps float32) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_l2_norm(ctx.(*Context).ctx, t.t, C.float(eps)),
}
}
func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
tt := C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))
if w != nil {
tt = C.ggml_mul(ctx.(*Context).ctx, tt, w.(*Tensor).t)
if b != nil {
tt = C.ggml_add(ctx.(*Context).ctx, tt, b.(*Tensor).t)
}
}
return &Tensor{b: t.b, t: tt}
}
func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor {
tt := C.ggml_rms_norm(ctx.(*Context).ctx, t.t, C.float(eps))
if w != nil {
tt = C.ggml_mul(ctx.(*Context).ctx, tt, w.(*Tensor).t)
}
return &Tensor{b: t.b, t: tt}
}
func (t *Tensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
if len(shape) != 4 {
panic("expected 4 dimensions")
} else if shape[3] != 0 {
panic("cuda does not support 4d tensors")
}
return &Tensor{
b: t.b,
t: C.ggml_pad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
}
}
// Permute permutes t according to order. Permute panics if the number of dimensions
// in order does not match the number of dimensions in t.
func (t *Tensor) Permute(ctx ml.Context, order ...int) ml.Tensor {
if len(order) != len(t.Shape()) && len(order) != 4 {
panic("invalid number of dimensions for permute")
}
// ggml_permute requires 4 dimensions so fill in the rest
for i := len(order); i < 4; i++ {
order = append(order, i)
}
return &Tensor{
b: t.b,
t: C.ggml_permute(ctx.(*Context).ctx, t.t, C.int(order[0]), C.int(order[1]), C.int(order[2]), C.int(order[3])),
}
}
func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_get_rows(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_cpy(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
// inferShape updates shape in place to automatically set a single -1 dimesion
// based on the input tensor and the other dimensions
func inferShape(t *Tensor, shape []int) {
total := 1
for _, dim := range t.Shape() {
total *= dim
}
dim := -1
for i := range shape {
switch shape[i] {
case -1:
if dim != -1 {
panic("only one dimension can be inferred")
}
dim = i
case 0:
panic("dimension cannot be zero")
default:
if total%shape[i] != 0 {
panic("cannot infer dimension")
}
total /= shape[i]
}
}
if dim != -1 {
shape[dim] = total
}
}
func (t *Tensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
if slices.Contains(shape, -1) {
inferShape(t, shape)
}
switch len(shape) {
case 1:
return &Tensor{
b: t.b,
t: C.ggml_reshape_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
}
case 2:
return &Tensor{
b: t.b,
t: C.ggml_reshape_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
}
case 3:
return &Tensor{
b: t.b,
t: C.ggml_reshape_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
}
case 4:
return &Tensor{
b: t.b,
t: C.ggml_reshape_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
}
default:
panic("unsupported number of dimensions")
}
}
func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_scale(ctx.(*Context).ctx, t.t, (C.float)(s)),
}
}
func (t *Tensor) SumRows(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_sum_rows(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_soft_max(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Sin(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_sin(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Cos(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_cos(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_tanh_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Sigmoid(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_sigmoid_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
switch len(shape) {
case 1:
return &Tensor{
b: t.b,
t: C.ggml_view_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.size_t(offset)),
}
case 3:
return &Tensor{
b: t.b,
t: C.ggml_view_2d(ctx.(*Context).ctx, t.t,
C.int64_t(shape[0]), C.int64_t(shape[2]),
C.size_t(shape[1]),
C.size_t(offset)),
}
case 5:
return &Tensor{
b: t.b,
t: C.ggml_view_3d(ctx.(*Context).ctx, t.t,
C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]),
C.size_t(shape[1]), C.size_t(shape[3]),
C.size_t(offset)),
}
case 7:
return &Tensor{
b: t.b,
t: C.ggml_view_4d(ctx.(*Context).ctx, t.t,
C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.int64_t(shape[6]),
C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(shape[5]),
C.size_t(offset)),
}
default:
panic("unsupported number of dimensions")
}
}
func (t *Tensor) RoPE(ctx ml.Context, positions ml.Tensor, ropeDim int, ropeBase, ropeScale float32, options ...func(*rope.Options)) ml.Tensor {
// Default options
opts := rope.Options{Factors: &Tensor{}}
// Apply any provided options
for _, option := range options {
option(&opts)
}
dequant := t.t
if C.ggml_is_quantized(t.t._type) {
dequant = C.ggml_cast(ctx.(*Context).ctx, t.t, C.GGML_TYPE_F32)
}
var tt *C.struct_ggml_tensor
if len(opts.MRoPE.Sections) > 0 {
mropeSections := make([]C.int32_t, 4)
for i, section := range opts.MRoPE.Sections {
mropeSections[i] = C.int32_t(section)
}
tt = C.ggml_rope_multi(
ctx.(*Context).ctx,
dequant,
positions.(*Tensor).t,
opts.Factors.(*Tensor).t,
C.int(ropeDim),
unsafe.SliceData(mropeSections),
C.int(opts.Type),
cmp.Or(C.int(opts.YaRN.OriginalContextLength), 128<<10),
C.float(ropeBase), C.float(ropeScale),
C.float(opts.YaRN.ExtrapolationFactor),
cmp.Or(C.float(opts.YaRN.AttentionFactor), 1),
cmp.Or(C.float(opts.YaRN.BetaFast), 32),
cmp.Or(C.float(opts.YaRN.BetaSlow), 1),
)
} else {
tt = C.ggml_rope_ext(
ctx.(*Context).ctx,
dequant,
positions.(*Tensor).t,
opts.Factors.(*Tensor).t,
C.int(ropeDim), C.int(opts.Type),
cmp.Or(C.int(opts.YaRN.OriginalContextLength), 128<<10),
C.float(ropeBase), C.float(ropeScale),
C.float(opts.YaRN.ExtrapolationFactor),
cmp.Or(C.float(opts.YaRN.AttentionFactor), 1),
cmp.Or(C.float(opts.YaRN.BetaFast), 32),
cmp.Or(C.float(opts.YaRN.BetaSlow), 1),
)
}
return &Tensor{b: t.b, t: tt}
}
func (t *Tensor) IM2Col(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_im2col(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1), true, C.GGML_TYPE_F32),
}
}
func (t *Tensor) GELU(ctx ml.Context, t2 ...ml.Tensor) ml.Tensor {
if len(t2) > 0 {
return &Tensor{
b: t.b,
t: C.ggml_geglu_split(ctx.(*Context).ctx, t.t, t2[0].(*Tensor).t),
}
}
return &Tensor{
b: t.b,
t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) SILU(ctx ml.Context, t2 ...ml.Tensor) ml.Tensor {
if len(t2) > 0 {
return &Tensor{
b: t.b,
t: C.ggml_swiglu_split(ctx.(*Context).ctx, t.t, t2[0].(*Tensor).t),
}
}
return &Tensor{
b: t.b,
t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) RELU(ctx ml.Context, t2 ...ml.Tensor) ml.Tensor {
if len(t2) > 0 {
return &Tensor{
b: t.b,
t: C.ggml_reglu_split(ctx.(*Context).ctx, t.t, t2[0].(*Tensor).t),
}
}
return &Tensor{
b: t.b,
t: C.ggml_relu_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) SILUAlphaLimit(ctx ml.Context, up ml.Tensor, alpha, limit float32) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_swiglu_oai(ctx.(*Context).ctx, t.t, up.(*Tensor).t, C.float(alpha), C.float(limit)),
}
}
func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
}
}
func (t *Tensor) Conv3D(ctx ml.Context, t2 ml.Tensor, c, s0, s1, s2, p0, p1, p2, d0, d1, d2 int) ml.Tensor {
var tt ml.Tensor = &Tensor{
b: t.b,
t: C.ggml_conv_3d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int64_t(c), C.int(s0), C.int(s1), C.int(s2), C.int(p0), C.int(p1), C.int(p2), C.int(d0), C.int(d1), C.int(d2)),
}
tt = tt.Reshape(ctx, t.Dim(3)/c, t2.Dim(3)/c)
return tt
}
func (t *Tensor) AvgPool2D(ctx ml.Context, k, s int, p float32) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_pool_2d(ctx.(*Context).ctx, t.t, C.GGML_OP_POOL_AVG, C.int(k), C.int(k), C.int(s), C.int(s), C.float(p), C.float(p)),
}
}
func (t *Tensor) Set(ctx ml.Context, t2 ml.Tensor, offset int, strides ...int) ml.Tensor {
var tt *C.struct_ggml_tensor
switch len(strides) {
case 0:
tt = C.ggml_set_1d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.size_t(offset))
case 1:
tt = C.ggml_set_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.size_t(offset), C.size_t(strides[0]))
default:
panic("unsupported number of dimensions")
}
return &Tensor{b: t.b, t: tt}
}
func (t *Tensor) ScaledDotProductAttention(ctx ml.Context, key, value, mask, sinks ml.Tensor, scale float64) ml.Tensor {
var kqMask *C.struct_ggml_tensor
if mask != nil {
kqMask = mask.(*Tensor).t
}
query := t.Permute(ctx, 0, 2, 1, 3)
key = key.Permute(ctx, 0, 2, 1, 3)
if t.b.flashAttention {
value = value.Permute(ctx, 0, 2, 1, 3)
kqv := C.ggml_flash_attn_ext(ctx.(*Context).ctx, query.(*Tensor).t, key.(*Tensor).t, value.(*Tensor).t, kqMask, C.float(scale), 0, 0)
if sinks != nil {
C.ggml_flash_attn_ext_add_sinks(kqv, sinks.(*Tensor).t)
}
C.ggml_flash_attn_ext_set_prec(kqv, C.GGML_PREC_F32)
return &Tensor{b: t.b, t: kqv}
} else {
kq := key.MulmatFullPrec(ctx, query)
kq = &Tensor{
b: t.b,
t: C.ggml_soft_max_ext(ctx.(*Context).ctx, kq.(*Tensor).t, kqMask, C.float(scale), 0),
}
if sinks != nil {
C.ggml_soft_max_add_sinks(kq.(*Tensor).t, sinks.(*Tensor).t)
}
kqv := value.Mulmat(ctx, kq)
return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
}
}
func (t *Tensor) Duplicate(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_dup(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) TopK(ctx ml.Context, k int) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_top_k(ctx.(*Context).ctx, t.t, C.int(k)),
}
}
func (t *Tensor) Argsort(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_argsort(ctx.(*Context).ctx, t.t, C.GGML_SORT_ORDER_ASC),
}
}
func (t *Tensor) Mean(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_mean(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Variance(ctx ml.Context) ml.Tensor {
return t.Add(ctx, t.Mean(ctx).Scale(ctx, -1)).
Sqr(ctx).
SumRows(ctx).
Scale(ctx, 1/float64(t.Dim(0)))
}
func (t *Tensor) Stddev(ctx ml.Context) ml.Tensor {
return t.Variance(ctx).Sqrt(ctx)
}
func (t *Tensor) Sqr(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_sqr(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Sqrt(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_sqrt(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Clamp(ctx ml.Context, min, max float32) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_clamp(ctx.(*Context).ctx, t.t, C.float(min), C.float(max)),
}
}