mirror of
https://github.com/ollama/ollama.git
synced 2025-11-11 01:37:30 +01:00
* TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch
This will be redone once my branch is merged upstream in llama.cpp
* feat: Update all patches
There are a number that are no longer needed at all:
- 0003-embeddings: Embeddings entirely overhauled on master
- 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely
overhauled on master
- 0019-metal-add-mean-kernel-14267: Merged upstream
- 0020-CUDA-add-mean-operation-14313: Merged upstream
* feat: Sync llama.cpp and ggml
* fix: Update rsync-filter for all moved/new/removed files
* fix: Add files missing from sync
* fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs
* fix: Add ggml files missing from sync
* fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files
* fix: Remove mtmd main cpp files
* fix: Add missing include in sampling_ext.cpp
* fix: Update llama.go to use mtmd instead of clip/llava
* fix: Add patch for mtmd_input_text
* chore: Ignore *.patched in the patch directory
* fix: Fix support for arch-specific ggml-cpu source files with new arrangement
In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific
implementations were split out into a nested tree structure under
ggml-cpu/arch. This conflicts with standard CGO layout where all
arch-specific source files are expected to live in the same directory as
the parent go module and use suffixes based on GOOS and GOARCH. As such,
there were really two options for getting this to work:
1. Add a patch on top of the GGML sync to rearrange the files to match the
GO layout convention
2. Use CGO directives to conditionally include the nested source files in
the compilation units
This commit does (2) in order to minimize the set of changes needed on top
of the upstream file layout. To get this to work, there are two key things
needed:
1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in
the preprocessor directives
2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to
explicitly include the .c|.cpp files for the given architecture from the
nested directory
* fix: Use mtmd_helper to correctly load the bitmap for the image
* fix: Apply patch for mtmd_text_input
* fix: Add missing stb to llama.cpp rsync-filter
* fix: Add sync'ed stb vendored header
* fix: Use c++17 and include vendor for go wrapper modules
* fix: Update patch 0015 for upstream implementation of uuid
* feat: Bump to the latest tip of the branch
* fix: Update patches for bump
* feat: Bump back to the cenral repo and point at the latest master
This includes granite 4 and a number of other model architectures!
* fix: Revert changes to ggml export GPU UUID patch
* fix: Add patch for GGML_VERSION and GGML_COMMIT constants
* feat: Sync all patched code
* build: Include cmake/common.cmake in ggml sync
* build: Add top-level include for GNUINstallDirs in CMakeLists.txt
This is used to populate CMAKE_INSTALL_BINDIR
* fix: Add a patch to avoid power throttling API on non-msvc windows builds
* fix: Sync patch changes for ggml-cpu.c
* feat: Bump llama.cpp to 4a4f42
This picks up support for Kimi K2 and PLaMO-2
* feat: Sync llama.cpp
* fix: Handle multi-chunk image encodings from mtmd
* fix: Re-number patches after merge with `main`
* feat: Bump to 41e78c in the makefile
* fix: Fix Solar and argsort/copy patches after bump
* fix: Remove Gemma3n CUDA Graphs patch
It was implemented upstream:
https://github.com/ggml-org/llama.cpp/pull/14741
* feat: Sync llama.cpp / ggml after latest bump
* build: Remove unnecessary CFLAGS definitions in cpu.go
* fix: Remove unnecessary additions in the rsync-filter
* fix: Remove unused vendored code for chat template parsing
* Revert "fix: Remove Gemma3n CUDA Graphs patch"
This reverts commit d724caced3.
* fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes
https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394
* fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n
* unwind mxfp4 patch
Prepare to bump ggml with their impl for mxfp4
* bump
* fix windows build error
* Convert tensors at load time
Repack the mxfp4 tensors as ggmls kernels expect them to be.
* convert mlp bf16 to f32
* buffer the conversion better
* reshape earlier
* openai swiglu
* add ids
* split qkv, gate_up
* fix nested alt tags
* fast attention
* remove debug messages
* fix lint
* remove redundant test
* remap values only if source/target are different
* add back i32->i32 copy
* refactor cpu quants
* clean up vendor
* update patch instructions
* clean up patches
* remove webgpu
* update mem
* also handle gpt-oss
* revert convert changes
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
419 lines
18 KiB
Diff
419 lines
18 KiB
Diff
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
|
From: jmorganca <jmorganca@gmail.com>
|
|
Date: Sun, 20 Apr 2025 16:11:09 -0700
|
|
Subject: [PATCH] solar-pro
|
|
|
|
adds support for the Solar Pro architecture
|
|
---
|
|
src/llama-arch.cpp | 21 ++++
|
|
src/llama-arch.h | 3 +
|
|
src/llama-hparams.cpp | 8 ++
|
|
src/llama-hparams.h | 5 +
|
|
src/llama-model-loader.cpp | 1 +
|
|
src/llama-model.cpp | 207 +++++++++++++++++++++++++++++++++++++
|
|
src/llama-model.h | 3 +
|
|
7 files changed, 248 insertions(+)
|
|
|
|
diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp
|
|
index 18dcc6dd..4b285646 100644
|
|
--- a/src/llama-arch.cpp
|
|
+++ b/src/llama-arch.cpp
|
|
@@ -78,6 +78,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
|
{ LLM_ARCH_GRANITE_MOE, "granitemoe" },
|
|
{ LLM_ARCH_GRANITE_HYBRID, "granitehybrid" },
|
|
{ LLM_ARCH_CHAMELEON, "chameleon" },
|
|
+ { LLM_ARCH_SOLAR, "solar" },
|
|
{ LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" },
|
|
{ LLM_ARCH_PLM, "plm" },
|
|
{ LLM_ARCH_BAILINGMOE, "bailingmoe" },
|
|
@@ -164,6 +165,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
|
{ LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
|
|
{ LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
|
|
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
|
|
+ { LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection" },
|
|
{ LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" },
|
|
{ LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" },
|
|
|
|
@@ -1794,6 +1796,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
|
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
|
|
},
|
|
},
|
|
+ {
|
|
+ LLM_ARCH_SOLAR,
|
|
+ {
|
|
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
|
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
|
+ { LLM_TENSOR_OUTPUT, "output" },
|
|
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
|
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
|
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
|
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
|
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
|
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
|
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
|
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
|
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
|
+ { LLM_TENSOR_BSKCN_TV, "bskcn_tv" },
|
|
+ },
|
|
+ },
|
|
{
|
|
LLM_ARCH_WAVTOKENIZER_DEC,
|
|
{
|
|
@@ -2219,6 +2239,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
|
|
{LLM_TENSOR_LAUREL_POST_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
|
// this tensor is loaded for T5, but never used
|
|
{LLM_TENSOR_DEC_CROSS_ATTN_REL_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_NONE}},
|
|
+ {LLM_TENSOR_BSKCN_TV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
|
{LLM_TENSOR_CONV1D, {LLM_TENSOR_LAYER_INPUT, GGML_OP_IM2COL}},
|
|
{LLM_TENSOR_POS_NET_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
|
{LLM_TENSOR_POS_NET_NORM1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
|
diff --git a/src/llama-arch.h b/src/llama-arch.h
|
|
index 7af587e7..3ea994c7 100644
|
|
--- a/src/llama-arch.h
|
|
+++ b/src/llama-arch.h
|
|
@@ -82,6 +82,7 @@ enum llm_arch {
|
|
LLM_ARCH_GRANITE_MOE,
|
|
LLM_ARCH_GRANITE_HYBRID,
|
|
LLM_ARCH_CHAMELEON,
|
|
+ LLM_ARCH_SOLAR,
|
|
LLM_ARCH_WAVTOKENIZER_DEC,
|
|
LLM_ARCH_PLM,
|
|
LLM_ARCH_BAILINGMOE,
|
|
@@ -168,6 +169,7 @@ enum llm_kv {
|
|
LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,
|
|
LLM_KV_ATTENTION_SLIDING_WINDOW,
|
|
LLM_KV_ATTENTION_SCALE,
|
|
+ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
|
|
LLM_KV_ATTENTION_KEY_LENGTH_MLA,
|
|
LLM_KV_ATTENTION_VALUE_LENGTH_MLA,
|
|
|
|
@@ -394,6 +396,7 @@ enum llm_tensor {
|
|
LLM_TENSOR_ENC_OUTPUT_NORM,
|
|
LLM_TENSOR_CLS,
|
|
LLM_TENSOR_CLS_OUT,
|
|
+ LLM_TENSOR_BSKCN_TV,
|
|
LLM_TENSOR_CONV1D,
|
|
LLM_TENSOR_CONVNEXT_DW,
|
|
LLM_TENSOR_CONVNEXT_NORM,
|
|
diff --git a/src/llama-hparams.cpp b/src/llama-hparams.cpp
|
|
index 7a06368d..35fc054f 100644
|
|
--- a/src/llama-hparams.cpp
|
|
+++ b/src/llama-hparams.cpp
|
|
@@ -146,6 +146,14 @@ uint32_t llama_hparams::n_pos_per_embd() const {
|
|
return rope_type == LLAMA_ROPE_TYPE_MROPE ? 4 : 1;
|
|
}
|
|
|
|
+bool llama_hparams::n_bskcn(uint32_t n, uint32_t il) const {
|
|
+ if (il < n_layer) {
|
|
+ return n_bskcn_arr[n][il] > 0;
|
|
+ }
|
|
+
|
|
+ GGML_ABORT("fatal error");
|
|
+}
|
|
+
|
|
bool llama_hparams::is_swa(uint32_t il) const {
|
|
if (il < n_layer) {
|
|
return swa_layers[il];
|
|
diff --git a/src/llama-hparams.h b/src/llama-hparams.h
|
|
index bd231224..29bd9056 100644
|
|
--- a/src/llama-hparams.h
|
|
+++ b/src/llama-hparams.h
|
|
@@ -62,6 +62,8 @@ struct llama_hparams {
|
|
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
|
|
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
|
|
|
|
+ std::array<std::array<uint32_t, LLAMA_MAX_LAYERS>, 4> n_bskcn_arr = {};
|
|
+
|
|
uint32_t n_layer_dense_lead = 0;
|
|
uint32_t n_lora_q = 0;
|
|
uint32_t n_lora_kv = 0;
|
|
@@ -220,6 +222,9 @@ struct llama_hparams {
|
|
|
|
uint32_t n_pos_per_embd() const;
|
|
|
|
+ // Block skip connection
|
|
+ bool n_bskcn(uint32_t n, uint32_t il) const;
|
|
+
|
|
bool is_swa(uint32_t il) const;
|
|
};
|
|
|
|
diff --git a/src/llama-model-loader.cpp b/src/llama-model-loader.cpp
|
|
index f71c40f8..7eab9b68 100644
|
|
--- a/src/llama-model-loader.cpp
|
|
+++ b/src/llama-model-loader.cpp
|
|
@@ -465,6 +465,7 @@ namespace GGUFMeta {
|
|
// TODO: this is not very clever - figure out something better
|
|
template bool llama_model_loader::get_key_or_arr<std::array<int, 4>>(enum llm_kv kid, std::array<int, 4> & result, uint32_t n, bool required);
|
|
template bool llama_model_loader::get_key_or_arr<std::array<uint32_t, 512>>(enum llm_kv kid, std::array<uint32_t, 512> & result, uint32_t n, bool required);
|
|
+ template bool llama_model_loader::get_key_or_arr<uint32_t>(const std::string & key, std::array<uint32_t, 512> & result, uint32_t n, bool required);
|
|
|
|
llama_model_loader::llama_model_loader(
|
|
const std::string & fname,
|
|
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
|
|
index 58ca7df7..280129e1 100644
|
|
--- a/src/llama-model.cpp
|
|
+++ b/src/llama-model.cpp
|
|
@@ -1706,6 +1706,21 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|
default: type = LLM_TYPE_UNKNOWN;
|
|
}
|
|
} break;
|
|
+ case LLM_ARCH_SOLAR:
|
|
+ {
|
|
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
|
+ for (size_t i = 0; i < hparams.n_bskcn_arr.max_size(); ++i) {
|
|
+ auto & bskcn = hparams.n_bskcn_arr[i];
|
|
+ bskcn.fill(0);
|
|
+ auto kv = LLM_KV(arch);
|
|
+ ml.get_key_or_arr(format((kv(LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION) + ".%d").c_str(), i), bskcn, hparams.n_layer, false);
|
|
+ }
|
|
+
|
|
+ switch (hparams.n_layer) {
|
|
+ case 64: type = LLM_TYPE_22B; break;
|
|
+ default: type = LLM_TYPE_UNKNOWN;
|
|
+ }
|
|
+ } break;
|
|
case LLM_ARCH_WAVTOKENIZER_DEC:
|
|
{
|
|
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
|
@@ -4793,6 +4808,34 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|
|
|
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
|
|
|
|
+ layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
|
|
+ layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
|
|
+ layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
|
+ }
|
|
+ } break;
|
|
+ case LLM_ARCH_SOLAR:
|
|
+ {
|
|
+ tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
|
+
|
|
+ // output
|
|
+ {
|
|
+ output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
|
+ output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
|
+ }
|
|
+
|
|
+ for (int i = 0; i < n_layer; ++i) {
|
|
+ auto & layer = layers[i];
|
|
+
|
|
+ layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
|
|
+
|
|
+ layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
|
|
+ layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
|
|
+ layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
|
|
+ layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
|
|
+
|
|
+ layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
|
|
+
|
|
+ layer.bskcn_tv = create_tensor(tn(LLM_TENSOR_BSKCN_TV, "weight", i), {2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
|
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
|
|
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
|
|
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
|
@@ -15495,6 +15538,165 @@ struct llm_build_granite_hybrid : public llm_graph_context_mamba {
|
|
}
|
|
};
|
|
|
|
+struct llm_build_solar : public llm_graph_context {
|
|
+ llm_build_solar(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
|
+ const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
|
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
|
|
+
|
|
+ struct ggml_tensor * cur;
|
|
+ struct ggml_tensor * inpL;
|
|
+
|
|
+ inpL = build_inp_embd(model.tok_embd);
|
|
+
|
|
+ // inp_pos - contains the positions
|
|
+ struct ggml_tensor * inp_pos = build_inp_pos();
|
|
+
|
|
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
|
+ auto * inp_attn = build_attn_inp_kv_unified();
|
|
+
|
|
+ const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
|
|
+
|
|
+ struct ggml_tensor * bskcn_1;
|
|
+ struct ggml_tensor * bskcn_2;
|
|
+
|
|
+ for (int il = 0; il < n_layer; ++il) {
|
|
+ struct ggml_tensor * inpSA = inpL;
|
|
+
|
|
+ if (hparams.n_bskcn(0, il)) {
|
|
+ bskcn_1 = inpSA;
|
|
+ }
|
|
+
|
|
+ if (hparams.n_bskcn(1, il)) {
|
|
+ bskcn_2 = inpSA;
|
|
+ }
|
|
+
|
|
+ if (hparams.n_bskcn(2, il)) {
|
|
+ inpSA = ggml_add(
|
|
+ ctx0,
|
|
+ ggml_mul(ctx0, bskcn_1, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, 0)),
|
|
+ ggml_mul(ctx0, inpSA, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, ggml_element_size(model.layers[il].bskcn_tv))));
|
|
+ }
|
|
+
|
|
+ if (hparams.n_bskcn(3, il)) {
|
|
+ inpSA = ggml_add(
|
|
+ ctx0,
|
|
+ ggml_mul(ctx0, bskcn_2, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, 0)),
|
|
+ ggml_mul(ctx0, inpSA, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, ggml_element_size(model.layers[il].bskcn_tv))));
|
|
+ }
|
|
+
|
|
+ // norm
|
|
+ cur = build_norm(inpL,
|
|
+ model.layers[il].attn_norm, NULL,
|
|
+ LLM_NORM_RMS, il);
|
|
+ cb(cur, "attn_norm", il);
|
|
+
|
|
+ // self-attention
|
|
+ {
|
|
+ // rope freq factors for llama3; may return nullptr for llama2 and other models
|
|
+ ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
|
|
+
|
|
+ // compute Q and K and RoPE them
|
|
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
+ cb(Qcur, "Qcur", il);
|
|
+ if (model.layers[il].bq) {
|
|
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
|
+ cb(Qcur, "Qcur", il);
|
|
+ }
|
|
+
|
|
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
|
+ cb(Kcur, "Kcur", il);
|
|
+ if (model.layers[il].bk) {
|
|
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
|
+ cb(Kcur, "Kcur", il);
|
|
+ }
|
|
+
|
|
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
|
+ cb(Vcur, "Vcur", il);
|
|
+ if (model.layers[il].bv) {
|
|
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
|
+ cb(Vcur, "Vcur", il);
|
|
+ }
|
|
+
|
|
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
|
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
|
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
|
+
|
|
+ Qcur = ggml_rope_ext(
|
|
+ ctx0, Qcur, inp_pos, rope_factors,
|
|
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
+ );
|
|
+
|
|
+ Kcur = ggml_rope_ext(
|
|
+ ctx0, Kcur, inp_pos, rope_factors,
|
|
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
+ );
|
|
+
|
|
+ cb(Qcur, "Qcur", il);
|
|
+ cb(Kcur, "Kcur", il);
|
|
+ cb(Vcur, "Vcur", il);
|
|
+
|
|
+ cur = build_attn(inp_attn,
|
|
+ model.layers[il].wo, model.layers[il].bo,
|
|
+ Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
|
|
+ cb(cur, "attn_out", il);
|
|
+ }
|
|
+
|
|
+ if (il == n_layer - 1) {
|
|
+ // skip computing output for unused tokens
|
|
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
|
+ }
|
|
+
|
|
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
|
+ cb(ffn_inp, "ffn_inp", il);
|
|
+
|
|
+ // feed-forward network
|
|
+ cur = build_norm(ffn_inp,
|
|
+ model.layers[il].ffn_norm, NULL,
|
|
+ LLM_NORM_RMS, il);
|
|
+ cb(cur, "ffn_norm", il);
|
|
+
|
|
+ cur = build_ffn(cur,
|
|
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
|
+ model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
|
|
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
|
+ NULL,
|
|
+ LLM_FFN_SILU, LLM_FFN_PAR, il);
|
|
+ cb(cur, "ffn_out", il);
|
|
+
|
|
+ cur = ggml_add(ctx0, cur, ffn_inp);
|
|
+ cb(cur, "ffn_out", il);
|
|
+
|
|
+ cur = build_cvec(cur, il);
|
|
+ cb(cur, "l_out", il);
|
|
+
|
|
+ // input for next layer
|
|
+ inpL = cur;
|
|
+ }
|
|
+
|
|
+ cur = inpL;
|
|
+
|
|
+ cur = build_norm(cur,
|
|
+ model.output_norm, NULL,
|
|
+ LLM_NORM_RMS, -1);
|
|
+
|
|
+ cb(cur, "result_norm", -1);
|
|
+ res->t_embd = cur;
|
|
+
|
|
+ // lm_head
|
|
+ cur = build_lora_mm(model.output, cur);
|
|
+
|
|
+ cb(cur, "result_output", -1);
|
|
+ res->t_logits = cur;
|
|
+
|
|
+ ggml_build_forward_expand(gf, cur);
|
|
+ }
|
|
+};
|
|
+
|
|
// ref: https://github.com/facebookresearch/chameleon
|
|
// based on the original build_llama() function, changes:
|
|
// * qk-norm
|
|
@@ -18439,6 +18641,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
|
{
|
|
llm = std::make_unique<llm_build_chameleon>(*this, params);
|
|
} break;
|
|
+ case LLM_ARCH_SOLAR:
|
|
+ {
|
|
+ llm = std::make_unique<llm_build_solar>(*this, params);
|
|
+ } break;
|
|
case LLM_ARCH_WAVTOKENIZER_DEC:
|
|
{
|
|
llm = std::make_unique<llm_build_wavtokenizer_dec>(*this, params);
|
|
@@ -18652,6 +18858,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
|
case LLM_ARCH_GRANITE_MOE:
|
|
case LLM_ARCH_GRANITE_HYBRID:
|
|
case LLM_ARCH_CHAMELEON:
|
|
+ case LLM_ARCH_SOLAR:
|
|
case LLM_ARCH_BAILINGMOE:
|
|
case LLM_ARCH_NEO_BERT:
|
|
case LLM_ARCH_SMOLLM3:
|
|
diff --git a/src/llama-model.h b/src/llama-model.h
|
|
index 6fcd74d5..09964533 100644
|
|
--- a/src/llama-model.h
|
|
+++ b/src/llama-model.h
|
|
@@ -70,6 +70,7 @@ enum llm_type {
|
|
LLM_TYPE_15B,
|
|
LLM_TYPE_16B,
|
|
LLM_TYPE_20B,
|
|
+ LLM_TYPE_22B,
|
|
LLM_TYPE_27B,
|
|
LLM_TYPE_30B,
|
|
LLM_TYPE_32B,
|
|
@@ -367,6 +368,8 @@ struct llama_layer {
|
|
// openai-moe
|
|
struct ggml_tensor * attn_sinks = nullptr;
|
|
|
|
+ struct ggml_tensor * bskcn_tv = nullptr;
|
|
+
|
|
struct llama_layer_posnet posnet;
|
|
|
|
struct llama_layer_convnext convnext;
|