mirror of
https://github.com/ollama/ollama.git
synced 2025-05-02 08:50:23 +02:00
This allows there to be a file that is a list of models that is not mixed into the runner code.
235 lines
8.5 KiB
Go
235 lines
8.5 KiB
Go
package mllama
|
|
|
|
import (
|
|
"math"
|
|
"slices"
|
|
|
|
"github.com/ollama/ollama/ml"
|
|
"github.com/ollama/ollama/ml/nn"
|
|
)
|
|
|
|
var batchSize int = 1
|
|
|
|
type VisionSelfAttention struct {
|
|
Query *nn.Linear `gguf:"attn_q"`
|
|
Key *nn.Linear `gguf:"attn_k"`
|
|
Value *nn.Linear `gguf:"attn_v"`
|
|
Output *nn.Linear `gguf:"attn_out"`
|
|
|
|
Gate ml.Tensor `gguf:"attn_gate"`
|
|
}
|
|
|
|
func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
|
headDim := opts.hiddenSize / opts.numHeads
|
|
|
|
query := sa.Query.Forward(ctx, hiddenState)
|
|
query = query.Reshape(ctx, headDim, opts.numHeads, query.Dim(1), batchSize)
|
|
query = query.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
|
|
|
key := sa.Key.Forward(ctx, hiddenState)
|
|
key = key.Reshape(ctx, headDim, opts.numHeads, key.Dim(1), batchSize)
|
|
key = key.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
|
|
|
value := sa.Value.Forward(ctx, hiddenState)
|
|
value = value.Reshape(ctx, headDim, opts.numHeads, value.Dim(1), batchSize)
|
|
value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
|
|
|
|
scores := key.Mulmat(ctx, query)
|
|
scores = scores.Scale(ctx, 1.0/math.Sqrt(float64(headDim)))
|
|
scores = scores.Softmax(ctx)
|
|
|
|
attention := value.Mulmat(ctx, scores)
|
|
attention = attention.Reshape(ctx, headDim, attention.Dim(1), opts.numHeads, batchSize)
|
|
attention = attention.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
|
attention = attention.Reshape(ctx, opts.hiddenSize, attention.Dim(2), batchSize)
|
|
|
|
hiddenState = sa.Output.Forward(ctx, attention)
|
|
if sa.Gate != nil {
|
|
hiddenState = hiddenState.Mul(ctx, sa.Gate)
|
|
}
|
|
|
|
return hiddenState
|
|
}
|
|
|
|
type VisionMLP struct {
|
|
Down *nn.Linear `gguf:"ffn_down"`
|
|
Up *nn.Linear `gguf:"ffn_up"`
|
|
|
|
Gate ml.Tensor `gguf:"ffn_gate"`
|
|
}
|
|
|
|
func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
|
hiddenState = mlp.Down.Forward(ctx, hiddenState).GELU(ctx)
|
|
hiddenState = mlp.Up.Forward(ctx, hiddenState)
|
|
if mlp.Gate != nil {
|
|
hiddenState = hiddenState.Mul(ctx, mlp.Gate)
|
|
}
|
|
|
|
return hiddenState
|
|
}
|
|
|
|
type VisionEncoderLayer struct {
|
|
AttentionNorm *nn.LayerNorm `gguf:"ln1"`
|
|
SelfAttention *VisionSelfAttention
|
|
|
|
MLPNorm *nn.LayerNorm `gguf:"ln2"`
|
|
MLP *VisionMLP
|
|
}
|
|
|
|
func (e *VisionEncoderLayer) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
|
residual := hiddenState
|
|
|
|
// self attention
|
|
hiddenState = e.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
|
|
hiddenState = e.SelfAttention.Forward(ctx, hiddenState, opts)
|
|
hiddenState = hiddenState.Add(ctx, residual)
|
|
residual = hiddenState
|
|
|
|
// feed forward
|
|
hiddenState = e.MLPNorm.Forward(ctx, hiddenState, opts.eps)
|
|
hiddenState = e.MLP.Forward(ctx, hiddenState, opts)
|
|
return hiddenState.Add(ctx, residual)
|
|
}
|
|
|
|
type VisionEncoder struct {
|
|
Layers []VisionEncoderLayer
|
|
}
|
|
|
|
func (e *VisionEncoder) Forward(ctx ml.Context, hiddenState ml.Tensor, intermediateLayersIndices []uint32, opts *VisionModelOptions) (ml.Tensor, []ml.Tensor) {
|
|
var intermediateHiddenStates []ml.Tensor
|
|
for i, layer := range e.Layers {
|
|
if slices.Contains(intermediateLayersIndices, uint32(i)) {
|
|
intermediateHiddenStates = append(intermediateHiddenStates, hiddenState.Reshape(ctx, append([]int{1}, hiddenState.Shape()...)...))
|
|
}
|
|
|
|
hiddenState = layer.Forward(ctx, hiddenState, opts)
|
|
}
|
|
|
|
return hiddenState, intermediateHiddenStates
|
|
}
|
|
|
|
type PrecomputedAspectRatioEmbedding struct {
|
|
Embedding *nn.Embedding
|
|
Gate ml.Tensor `gguf:"gate"`
|
|
}
|
|
|
|
func (e *PrecomputedAspectRatioEmbedding) Forward(ctx ml.Context, hiddenState ml.Tensor, aspectRatioIDs ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
|
embeddings := e.Embedding.Forward(ctx, aspectRatioIDs)
|
|
embeddings = embeddings.Reshape(ctx, opts.hiddenSize, 1, opts.numTiles)
|
|
if e.Gate != nil {
|
|
embeddings = embeddings.Mul(ctx, e.Gate)
|
|
}
|
|
|
|
return hiddenState.Add(ctx, embeddings)
|
|
}
|
|
|
|
type PrecomputedPositionEmbedding struct {
|
|
PositionEmbedding *nn.Embedding `gguf:"position_embd"`
|
|
PositionEmbeddingGate ml.Tensor `gguf:"position_embd.gate"`
|
|
|
|
TilePositionEmbedding *nn.Embedding `gguf:"tile_position_embd"`
|
|
TilePositionEmbeddingGate ml.Tensor `gguf:"tile_position_embd.gate"`
|
|
}
|
|
|
|
func (e *PrecomputedPositionEmbedding) Forward(ctx ml.Context, hiddenState, positionIDs, aspectRatioIDs ml.Tensor, numPositions int, opts *VisionModelOptions) ml.Tensor {
|
|
positionEmbedding := e.PositionEmbedding.Forward(ctx, positionIDs)
|
|
if e.PositionEmbeddingGate != nil {
|
|
positionEmbedding = positionEmbedding.Mul(ctx, e.PositionEmbeddingGate)
|
|
}
|
|
|
|
hiddenState = hiddenState.Add(ctx, positionEmbedding)
|
|
|
|
tilePositionEmbedding := e.TilePositionEmbedding.Forward(ctx, aspectRatioIDs)
|
|
tilePositionEmbedding = tilePositionEmbedding.Reshape(ctx, opts.hiddenSize, numPositions, opts.numTiles)
|
|
if e.TilePositionEmbeddingGate != nil {
|
|
tilePositionEmbedding = tilePositionEmbedding.Mul(ctx, e.TilePositionEmbeddingGate)
|
|
}
|
|
|
|
return hiddenState.Add(ctx, tilePositionEmbedding)
|
|
}
|
|
|
|
type VisionModelOptions struct {
|
|
hiddenSize, numHeads, numTiles int
|
|
imageSize, patchSize int
|
|
eps float32
|
|
|
|
intermediateLayersIndices []uint32
|
|
}
|
|
|
|
type VisionModel struct {
|
|
PatchEmbeddings *nn.Conv2D `gguf:"patch_embd"`
|
|
|
|
PreTilePositionEmbedding *PrecomputedAspectRatioEmbedding `gguf:"pre_tile_position_embd"`
|
|
PostTilePositionEmbedding *PrecomputedAspectRatioEmbedding `gguf:"post_tile_position_embd"`
|
|
PositionEmbedding *PrecomputedPositionEmbedding
|
|
|
|
PreLayerNorm *nn.LayerNorm `gguf:"pre_ln"`
|
|
PostLayerNorm *nn.LayerNorm `gguf:"post_ln"`
|
|
ClassEmbedding ml.Tensor `gguf:"class_embd"`
|
|
|
|
Transformer *VisionEncoder `gguf:"blk"`
|
|
GlobalTransformer *VisionEncoder `gguf:"global.blk"`
|
|
|
|
*VisionModelOptions
|
|
}
|
|
|
|
func (m *VisionModel) Forward(ctx ml.Context, pixelValues, positionIDs, aspectRatioIDs ml.Tensor) ml.Tensor {
|
|
numPatches := (m.imageSize / m.patchSize) * (m.imageSize / m.patchSize)
|
|
numPositions := numPatches
|
|
if m.ClassEmbedding != nil {
|
|
numPositions++
|
|
}
|
|
|
|
hiddenState := m.PatchEmbeddings.Forward(ctx, pixelValues, m.patchSize, m.patchSize, 0, 0, 1, 1)
|
|
hiddenState = hiddenState.Reshape(ctx, numPatches, m.hiddenSize, m.numTiles)
|
|
hiddenState = hiddenState.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
|
|
|
|
hiddenState = m.PreTilePositionEmbedding.Forward(ctx, hiddenState, aspectRatioIDs, m.VisionModelOptions)
|
|
hiddenState = m.ClassEmbedding.Stack(ctx, 2, slices.Repeat([]ml.Tensor{m.ClassEmbedding}, m.numTiles-1)...).Concat(ctx, hiddenState, 1)
|
|
|
|
hiddenState = m.PositionEmbedding.Forward(ctx, hiddenState, positionIDs, aspectRatioIDs, numPositions, m.VisionModelOptions)
|
|
hiddenState = m.PreLayerNorm.Forward(ctx, hiddenState, m.eps)
|
|
|
|
numPaddingPatches := 8 - (hiddenState.Dim(1)%8)%8
|
|
hiddenState = hiddenState.Pad(ctx, 0, numPaddingPatches, 0, 0)
|
|
|
|
hiddenState = hiddenState.Reshape(ctx, hiddenState.Dim(0), hiddenState.Dim(1)*hiddenState.Dim(2), batchSize)
|
|
hiddenState, intermediateHiddenStates := m.Transformer.Forward(ctx, hiddenState, m.intermediateLayersIndices, m.VisionModelOptions)
|
|
|
|
hiddenState = m.PostLayerNorm.Forward(ctx, hiddenState, m.eps)
|
|
|
|
hiddenState = hiddenState.Reshape(ctx, m.hiddenSize, numPositions+numPaddingPatches, m.numTiles, batchSize)
|
|
hiddenState = m.PostTilePositionEmbedding.Forward(ctx, hiddenState, aspectRatioIDs, m.VisionModelOptions)
|
|
|
|
hiddenState = hiddenState.Reshape(ctx, m.hiddenSize, m.numTiles*(numPositions+numPaddingPatches), batchSize)
|
|
hiddenState, _ = m.GlobalTransformer.Forward(ctx, hiddenState, nil, m.VisionModelOptions)
|
|
|
|
hiddenStates := intermediateHiddenStates[0].Stack(ctx, 0, intermediateHiddenStates[1:]...)
|
|
hiddenStates = hiddenStates.Reshape(ctx, len(intermediateHiddenStates)*m.hiddenSize, numPositions+numPaddingPatches, m.numTiles, batchSize)
|
|
hiddenStates = hiddenStates.Unpad(ctx, 0, numPaddingPatches, 0, 0)
|
|
|
|
hiddenState = hiddenState.Reshape(ctx, m.hiddenSize, numPositions+numPaddingPatches, m.numTiles, batchSize)
|
|
hiddenState = hiddenState.Unpad(ctx, 0, numPaddingPatches, 0, 0)
|
|
return hiddenState.Concat(ctx, hiddenStates, 0)
|
|
}
|
|
|
|
func newVisionModel(c ml.Config) *VisionModel {
|
|
return &VisionModel{
|
|
Transformer: &VisionEncoder{Layers: make([]VisionEncoderLayer, c.Uint("vision.block_count"))},
|
|
GlobalTransformer: &VisionEncoder{Layers: make([]VisionEncoderLayer, c.Uint("vision.global.block_count"))},
|
|
|
|
VisionModelOptions: &VisionModelOptions{
|
|
hiddenSize: int(c.Uint("vision.embedding_length")),
|
|
numHeads: int(c.Uint("vision.attention.head_count")),
|
|
numTiles: int(c.Uint("vision.max_num_tiles")),
|
|
|
|
imageSize: int(c.Uint("vision.image_size")),
|
|
patchSize: int(c.Uint("vision.patch_size")),
|
|
|
|
eps: c.Float("vision.attention.layer_norm_epsilon"),
|
|
|
|
intermediateLayersIndices: c.Uints("vision.intermediate_layers_indices"),
|
|
},
|
|
}
|
|
}
|