Bruce MacDonald 3892c3a703
llm: remove internal subprocess req and resp types ()
This commit refactors the LLM subsystem by removing internal subprocess
request and response types. It consolidates duplicate type definitions
across the codebase, moving them to centralized locations. The change also
standardizes interfaces between components, simplifies the ServerStatusResp
struct, and moves the ParseDurationMs function to a common package. This
cleanup reduces code duplication between different runner implementations
(llamarunner and ollamarunner).
2025-03-14 15:21:53 -07:00

1013 lines
29 KiB
Go

package llm
import (
"bufio"
"bytes"
"context"
"encoding/json"
"errors"
"fmt"
"io"
"log"
"log/slog"
"math/rand"
"net"
"net/http"
"os"
"os/exec"
"path/filepath"
"runtime"
"strconv"
"strings"
"sync"
"time"
"golang.org/x/sync/semaphore"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/discover"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llama"
"github.com/ollama/ollama/model"
)
type LlamaServer interface {
Ping(ctx context.Context) error
WaitUntilRunning(ctx context.Context) error
Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error
Embedding(ctx context.Context, input string) ([]float32, error)
Tokenize(ctx context.Context, content string) ([]int, error)
Detokenize(ctx context.Context, tokens []int) (string, error)
Close() error
EstimatedVRAM() uint64 // Total VRAM across all GPUs
EstimatedTotal() uint64
EstimatedVRAMByGPU(gpuID string) uint64
}
// llmServer is an instance of the llama.cpp server
type llmServer struct {
port int
cmd *exec.Cmd
done chan error // Channel to signal when the process exits
status *StatusWriter
options api.Options
numParallel int
modelPath string
// llamaModel is an instance of the cgo llama.cpp model definition
// nil if this server is running the new engine
llamaModel *llama.Model
llamaModelLock sync.Mutex
// textProcessor handles text encoding/decoding for the model in the Ollama engine
// nil if this server is running the llama.cpp based engine
textProcessor model.TextProcessor
estimate MemoryEstimate
totalLayers uint64
// gpuCount int
gpus discover.GpuInfoList // Recorded just before the model loaded, free space will be incorrect
loadDuration time.Duration // Record how long it took the model to load
loadProgress float32
sem *semaphore.Weighted
}
// LoadModel will load a model from disk. The model must be in the GGML format.
//
// It collects array values for arrays with a size less than or equal to
// maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
// the maxArraySize is negative, all arrays are collected.
func LoadModel(model string, maxArraySize int) (*ggml.GGML, error) {
if _, err := os.Stat(model); err != nil {
return nil, err
}
f, err := os.Open(model)
if err != nil {
return nil, err
}
defer f.Close()
ggml, _, err := ggml.Decode(f, maxArraySize)
return ggml, err
}
// NewLlamaServer will run a server for the given GPUs
// The gpu list must be a single family.
func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, adapters, projectors []string, opts api.Options, numParallel int) (LlamaServer, error) {
systemInfo := discover.GetSystemInfo()
systemTotalMemory := systemInfo.System.TotalMemory
systemFreeMemory := systemInfo.System.FreeMemory
systemSwapFreeMemory := systemInfo.System.FreeSwap
slog.Info("system memory", "total", format.HumanBytes2(systemTotalMemory), "free", format.HumanBytes2(systemFreeMemory), "free_swap", format.HumanBytes2(systemSwapFreeMemory))
// If the user wants zero GPU layers, reset the gpu list to be CPU/system ram info
if opts.NumGPU == 0 {
gpus = discover.GetCPUInfo()
}
estimate := EstimateGPULayers(gpus, f, projectors, opts)
if len(gpus) > 1 || gpus[0].Library != "cpu" {
switch {
case gpus[0].Library == "metal" && estimate.VRAMSize > systemTotalMemory:
// disable partial offloading when model is greater than total system memory as this
// can lead to locking up the system
opts.NumGPU = 0
case gpus[0].Library != "metal" && estimate.Layers == 0:
// Don't bother loading into the GPU if no layers can fit
gpus = discover.GetCPUInfo()
case opts.NumGPU < 0 && estimate.Layers > 0 && gpus[0].Library != "cpu":
opts.NumGPU = estimate.Layers
}
}
// On linux and windows, over-allocating CPU memory will almost always result in an error
// Darwin has fully dynamic swap so has no direct concept of free swap space
if runtime.GOOS != "darwin" {
systemMemoryRequired := estimate.TotalSize - estimate.VRAMSize
available := systemFreeMemory + systemSwapFreeMemory
if systemMemoryRequired > available {
slog.Warn("model request too large for system", "requested", format.HumanBytes2(systemMemoryRequired), "available", available, "total", format.HumanBytes2(systemTotalMemory), "free", format.HumanBytes2(systemFreeMemory), "swap", format.HumanBytes2(systemSwapFreeMemory))
return nil, fmt.Errorf("model requires more system memory (%s) than is available (%s)", format.HumanBytes2(systemMemoryRequired), format.HumanBytes2(available))
}
}
slog.Info("offload", "", estimate)
params := []string{
"--model", modelPath,
"--ctx-size", strconv.Itoa(opts.NumCtx),
"--batch-size", strconv.Itoa(opts.NumBatch),
}
if opts.NumGPU >= 0 {
params = append(params, "--n-gpu-layers", strconv.Itoa(opts.NumGPU))
}
if envconfig.Debug() {
params = append(params, "--verbose")
}
if opts.MainGPU > 0 {
params = append(params, "--main-gpu", strconv.Itoa(opts.MainGPU))
}
if len(adapters) > 0 {
for _, adapter := range adapters {
params = append(params, "--lora", adapter)
}
}
defaultThreads := systemInfo.GetOptimalThreadCount()
if opts.NumThread > 0 {
params = append(params, "--threads", strconv.Itoa(opts.NumThread))
} else if defaultThreads > 0 {
params = append(params, "--threads", strconv.Itoa(defaultThreads))
}
fa := envconfig.FlashAttention()
if fa && !gpus.FlashAttentionSupported() {
slog.Warn("flash attention enabled but not supported by gpu")
fa = false
}
if fa && !f.SupportsFlashAttention() {
slog.Warn("flash attention enabled but not supported by model")
fa = false
}
kvct := strings.ToLower(envconfig.KvCacheType())
if fa {
slog.Info("enabling flash attention")
params = append(params, "--flash-attn")
// Flash Attention also supports kv cache quantization
// Enable if the requested and kv cache type is supported by the model
if kvct != "" && f.SupportsKVCacheType(kvct) {
params = append(params, "--kv-cache-type", kvct)
} else {
slog.Warn("kv cache type not supported by model", "type", kvct)
}
} else if kvct != "" && kvct != "f16" {
slog.Warn("quantized kv cache requested but flash attention disabled", "type", kvct)
}
// mmap has issues with partial offloading on metal
for _, g := range gpus {
if g.Library == "metal" &&
uint64(opts.NumGPU) > 0 &&
uint64(opts.NumGPU) < f.KV().BlockCount()+1 {
opts.UseMMap = new(bool)
*opts.UseMMap = false
}
}
// Windows CUDA should not use mmap for best performance
// Linux with a model larger than free space, mmap leads to thrashing
// For CPU loads we want the memory to be allocated, not FS cache
if (runtime.GOOS == "windows" && gpus[0].Library == "cuda" && opts.UseMMap == nil) ||
(runtime.GOOS == "linux" && systemFreeMemory < estimate.TotalSize && opts.UseMMap == nil) ||
(gpus[0].Library == "cpu" && opts.UseMMap == nil) ||
(opts.UseMMap != nil && !*opts.UseMMap) {
params = append(params, "--no-mmap")
}
if opts.UseMLock {
params = append(params, "--mlock")
}
// TODO - NUMA support currently doesn't work properly
params = append(params, "--parallel", strconv.Itoa(numParallel))
if estimate.TensorSplit != "" {
params = append(params, "--tensor-split", estimate.TensorSplit)
}
if envconfig.MultiUserCache() {
params = append(params, "--multiuser-cache")
}
libs := make(map[string]string)
if entries, err := os.ReadDir(discover.LibOllamaPath); err == nil {
for _, entry := range entries {
libs[entry.Name()] = filepath.Join(discover.LibOllamaPath, entry.Name())
}
}
lib := gpus[0].RunnerName()
requested := envconfig.LLMLibrary()
if libs[requested] != "" {
slog.Info("using requested gpu library", "requested", requested)
lib = requested
}
var compatible []string
for k := range libs {
// exact match first
if k == lib {
compatible = append([]string{k}, compatible...)
continue
}
// then match the family (e.g. 'cuda')
if strings.Split(k, "_")[0] == strings.Split(lib, "_")[0] {
compatible = append(compatible, k)
}
}
slog.Debug("compatible gpu libraries", "compatible", compatible)
exe, err := os.Executable()
if err != nil {
return nil, fmt.Errorf("unable to lookup executable path: %w", err)
}
if eval, err := filepath.EvalSymlinks(exe); err == nil {
exe = eval
}
var llamaModel *llama.Model
var textProcessor model.TextProcessor
if envconfig.NewEngine() || f.KV().OllamaEngineRequired() {
textProcessor, err = model.NewTextProcessor(modelPath)
if err != nil {
// To prepare for opt-out mode, instead of treating this as an error, we fallback to the old runner
slog.Debug("model not yet supported by Ollama engine, switching to compatibility mode", "model", modelPath, "error", err)
}
}
if textProcessor == nil {
llamaModel, err = llama.LoadModelFromFile(modelPath, llama.ModelParams{VocabOnly: true})
if err != nil {
return nil, err
}
}
if len(projectors) > 0 && llamaModel != nil {
params = append(params, "--mmproj", projectors[0])
}
// iterate through compatible GPU libraries such as 'cuda_v12', 'cuda_v11', 'rocm', etc.
// adding each library's respective path to the LD_LIBRARY_PATH, until finally running
// without any LD_LIBRARY_PATH flags
for {
port := 0
if a, err := net.ResolveTCPAddr("tcp", "localhost:0"); err == nil {
var l *net.TCPListener
if l, err = net.ListenTCP("tcp", a); err == nil {
port = l.Addr().(*net.TCPAddr).Port
l.Close()
}
}
if port == 0 {
slog.Debug("ResolveTCPAddr failed, using random port")
port = rand.Intn(65535-49152) + 49152 // get a random port in the ephemeral range
}
finalParams := []string{"runner"}
if textProcessor != nil {
// New engine
// TODO - if we have failure to load scenarios, add logic to retry with the old runner
finalParams = append(finalParams, "--ollama-engine")
}
finalParams = append(finalParams, params...)
finalParams = append(finalParams, "--port", strconv.Itoa(port))
var pathEnv string
switch runtime.GOOS {
case "windows":
pathEnv = "PATH"
case "darwin":
pathEnv = "DYLD_LIBRARY_PATH"
default:
pathEnv = "LD_LIBRARY_PATH"
}
var libraryPaths []string
if libraryPath, ok := os.LookupEnv(pathEnv); ok {
libraryPaths = append(libraryPaths, filepath.SplitList(libraryPath)...)
}
if len(compatible) > 0 {
c := compatible[0]
if libpath, ok := libs[c]; ok {
slog.Debug("adding gpu library", "path", libpath)
libraryPaths = append(libraryPaths, libpath)
}
}
// Note: we always put the dependency path first
// since this was the exact version we compiled/linked against
if gpus[0].DependencyPath != nil {
slog.Debug("adding gpu dependency paths", "paths", gpus[0].DependencyPath)
// assume gpus from the same library have the same dependency path
libraryPaths = append(gpus[0].DependencyPath, libraryPaths...)
}
// finally, add the root library path
libraryPaths = append(libraryPaths, discover.LibOllamaPath)
s := &llmServer{
port: port,
cmd: exec.Command(exe, finalParams...),
status: NewStatusWriter(os.Stderr),
options: opts,
modelPath: modelPath,
llamaModel: llamaModel,
textProcessor: textProcessor,
estimate: estimate,
numParallel: numParallel,
sem: semaphore.NewWeighted(int64(numParallel)),
totalLayers: f.KV().BlockCount() + 1,
gpus: gpus,
done: make(chan error, 1),
}
s.cmd.Env = os.Environ()
s.cmd.Stdout = os.Stdout
s.cmd.Stderr = s.status
s.cmd.SysProcAttr = LlamaServerSysProcAttr
envWorkarounds := [][2]string{}
for _, gpu := range gpus {
envWorkarounds = append(envWorkarounds, gpu.EnvWorkarounds...)
}
visibleDevicesEnv, visibleDevicesEnvVal := gpus.GetVisibleDevicesEnv()
pathEnvVal := strings.Join(libraryPaths, string(filepath.ListSeparator))
// Update or add the path and visible devices variable with our adjusted version
pathNeeded := true
devicesNeeded := visibleDevicesEnv != ""
for i := range s.cmd.Env {
cmp := strings.SplitN(s.cmd.Env[i], "=", 2)
if strings.EqualFold(cmp[0], pathEnv) {
s.cmd.Env[i] = pathEnv + "=" + pathEnvVal
pathNeeded = false
} else if devicesNeeded && strings.EqualFold(cmp[0], visibleDevicesEnv) {
s.cmd.Env[i] = visibleDevicesEnv + "=" + visibleDevicesEnvVal
devicesNeeded = false
} else if len(envWorkarounds) != 0 {
for _, kv := range envWorkarounds {
if strings.EqualFold(cmp[0], kv[0]) {
s.cmd.Env[i] = kv[0] + "=" + kv[1]
}
}
}
}
if pathNeeded {
s.cmd.Env = append(s.cmd.Env, pathEnv+"="+pathEnvVal)
}
if devicesNeeded {
s.cmd.Env = append(s.cmd.Env, visibleDevicesEnv+"="+visibleDevicesEnvVal)
}
slog.Info("starting llama server", "cmd", s.cmd)
if envconfig.Debug() {
filteredEnv := []string{}
for _, ev := range s.cmd.Env {
if strings.HasPrefix(ev, "CUDA_") ||
strings.HasPrefix(ev, "ROCR_") ||
strings.HasPrefix(ev, "ROCM_") ||
strings.HasPrefix(ev, "HIP_") ||
strings.HasPrefix(ev, "GPU_") ||
strings.HasPrefix(ev, "HSA_") ||
strings.HasPrefix(ev, "GGML_") ||
strings.HasPrefix(ev, "PATH=") ||
strings.HasPrefix(ev, "LD_LIBRARY_PATH=") ||
strings.HasPrefix(ev, "DYLD_LIBRARY_PATH=") {
filteredEnv = append(filteredEnv, ev)
}
}
// Log at debug as the environment is inherited and might contain sensitive information
slog.Debug("subprocess", "environment", filteredEnv)
}
if err = s.cmd.Start(); err != nil {
var msg string
if s.status != nil && s.status.LastErrMsg != "" {
msg = s.status.LastErrMsg
}
err := fmt.Errorf("error starting runner: %v %s", err, msg)
if len(compatible) == 0 {
if llamaModel != nil {
llama.FreeModel(llamaModel)
}
return nil, err
}
slog.Warn("unable to start runner with compatible gpu", "error", err, "compatible", compatible)
compatible = compatible[1:]
continue
}
// reap subprocess when it exits
go func() {
err := s.cmd.Wait()
// Favor a more detailed message over the process exit status
if err != nil && s.status != nil && s.status.LastErrMsg != "" {
slog.Error("llama runner terminated", "error", err)
if strings.Contains(s.status.LastErrMsg, "unknown model") {
s.status.LastErrMsg = "this model is not supported by your version of Ollama. You may need to upgrade"
}
s.done <- errors.New(s.status.LastErrMsg)
} else {
s.done <- err
}
}()
return s, nil
}
}
type ServerStatus int
const ( // iota is reset to 0
ServerStatusReady ServerStatus = iota
ServerStatusNoSlotsAvailable
ServerStatusLoadingModel
ServerStatusNotResponding
ServerStatusError
)
func (s ServerStatus) String() string {
switch s {
case ServerStatusReady:
return "llm server ready"
case ServerStatusNoSlotsAvailable:
return "llm busy - no slots available"
case ServerStatusLoadingModel:
return "llm server loading model"
case ServerStatusNotResponding:
return "llm server not responding"
default:
return "llm server error"
}
}
type ServerStatusResponse struct {
Status ServerStatus `json:"status"`
Progress float32 `json:"progress"`
}
func (s *llmServer) getServerStatus(ctx context.Context) (ServerStatus, error) {
// Fail fast if its exited
if s.cmd.ProcessState != nil {
msg := ""
if s.status != nil && s.status.LastErrMsg != "" {
msg = s.status.LastErrMsg
}
if s.cmd.ProcessState.ExitCode() == -1 {
// Most likely a signal killed it, log some more details to try to help troubleshoot
slog.Warn("llama runner process no longer running", "sys", s.cmd.ProcessState.Sys(), "string", s.cmd.ProcessState)
}
return ServerStatusError, fmt.Errorf("llama runner process no longer running: %d %s", s.cmd.ProcessState.ExitCode(), msg)
}
req, err := http.NewRequestWithContext(ctx, http.MethodGet, fmt.Sprintf("http://127.0.0.1:%d/health", s.port), nil)
if err != nil {
return ServerStatusError, fmt.Errorf("error creating GET request: %v", err)
}
req.Header.Set("Content-Type", "application/json")
resp, err := http.DefaultClient.Do(req)
if err != nil {
if errors.Is(err, context.DeadlineExceeded) {
return ServerStatusNotResponding, errors.New("server not responding")
}
return ServerStatusError, fmt.Errorf("health resp: %w", err)
}
defer resp.Body.Close()
body, err := io.ReadAll(resp.Body)
if err != nil {
return ServerStatusError, fmt.Errorf("read health request: %w", err)
}
var ssr ServerStatusResponse
if err := json.Unmarshal(body, &ssr); err != nil {
return ServerStatusError, fmt.Errorf("health unmarshal encode response: %w", err)
}
switch ssr.Status {
case ServerStatusLoadingModel:
s.loadProgress = ssr.Progress
return ssr.Status, nil
case ServerStatusReady, ServerStatusNoSlotsAvailable:
return ssr.Status, nil
default:
return ssr.Status, fmt.Errorf("server error: %+v", ssr)
}
}
// getServerStatusRetry will retry if ServerStatusNoSlotsAvailable is received
func (s *llmServer) getServerStatusRetry(ctx context.Context) (ServerStatus, error) {
var retries int
for {
status, err := s.getServerStatus(ctx)
if err != nil {
return status, err
}
if status == ServerStatusNoSlotsAvailable {
if retries >= 10 {
return status, fmt.Errorf("no slots available after %d retries", retries)
}
time.Sleep(5 * time.Millisecond)
retries++
continue
}
return status, nil
}
}
func (s *llmServer) Ping(ctx context.Context) error {
_, err := s.getServerStatus(ctx)
if err != nil {
slog.Debug("server unhealthy", "error", err)
return err
}
return nil
}
func (s *llmServer) WaitUntilRunning(ctx context.Context) error {
start := time.Now()
stallDuration := envconfig.LoadTimeout() // If no progress happens
stallTimer := time.Now().Add(stallDuration) // give up if we stall
slog.Info("waiting for llama runner to start responding")
var lastStatus ServerStatus = -1
fullyLoaded := false
for {
select {
case <-ctx.Done():
slog.Warn("client connection closed before server finished loading, aborting load")
return fmt.Errorf("timed out waiting for llama runner to start: %w", ctx.Err())
case err := <-s.done:
return fmt.Errorf("llama runner process has terminated: %w", err)
default:
}
if time.Now().After(stallTimer) {
// timeout
msg := ""
if s.status != nil && s.status.LastErrMsg != "" {
msg = s.status.LastErrMsg
}
return fmt.Errorf("timed out waiting for llama runner to start - progress %0.2f - %s", s.loadProgress, msg)
}
if s.cmd.ProcessState != nil {
msg := ""
if s.status != nil && s.status.LastErrMsg != "" {
msg = s.status.LastErrMsg
}
return fmt.Errorf("llama runner process no longer running: %d %s", s.cmd.ProcessState.ExitCode(), msg)
}
ctx, cancel := context.WithTimeout(ctx, 200*time.Millisecond)
defer cancel()
priorProgress := s.loadProgress
status, _ := s.getServerStatus(ctx)
if lastStatus != status && status != ServerStatusReady {
// Only log on status changes
slog.Info("waiting for server to become available", "status", status)
}
switch status {
case ServerStatusReady:
s.loadDuration = time.Since(start)
slog.Info(fmt.Sprintf("llama runner started in %0.2f seconds", s.loadDuration.Seconds()))
return nil
default:
lastStatus = status
// Reset the timer as long as we're making forward progress on the load
if priorProgress != s.loadProgress {
slog.Debug(fmt.Sprintf("model load progress %0.2f", s.loadProgress))
stallTimer = time.Now().Add(stallDuration)
} else if !fullyLoaded && int(s.loadProgress*100.0) >= 100 {
slog.Debug("model load completed, waiting for server to become available", "status", status)
stallTimer = time.Now().Add(stallDuration)
fullyLoaded = true
}
time.Sleep(time.Millisecond * 250)
continue
}
}
}
var grammarJSON = `
root ::= object
value ::= object | array | string | number | ("true" | "false" | "null") ws
object ::=
"{" ws (
string ":" ws value
("," ws string ":" ws value)*
)? "}" ws
array ::=
"[" ws (
value
("," ws value)*
)? "]" ws
string ::=
"\"" (
[^"\\\x7F\x00-\x1F] |
"\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F]) # escapes
)* "\"" ws
number ::= ("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? ws
# Optional space: by convention, applied in this grammar after literal chars when allowed
ws ::= ([ \t\n] ws)?
`
const maxBufferSize = 512 * format.KiloByte
type ImageData struct {
Data []byte `json:"data"`
ID int `json:"id"`
AspectRatioID int `json:"aspect_ratio_id"`
}
type CompletionRequest struct {
Prompt string
Format json.RawMessage
Images []ImageData
Options *api.Options
Grammar string // set before sending the request to the subprocess
}
type CompletionResponse struct {
Content string `json:"content"`
DoneReason string `json:"done_reason"`
Done bool `json:"done"`
PromptEvalCount int `json:"prompt_eval_count"`
PromptEvalDuration time.Duration `json:"prompt_eval_duration"`
EvalCount int `json:"eval_count"`
EvalDuration time.Duration `json:"eval_duration"`
}
func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error {
if len(req.Format) > 0 {
switch string(req.Format) {
case `null`, `""`:
// Field was set, but "missing" a value. We accept
// these as "not set".
break
case `"json"`:
req.Grammar = grammarJSON
default:
if req.Format[0] != '{' {
return fmt.Errorf("invalid format: %q; expected \"json\" or a valid JSON Schema object", req.Format)
}
// User provided a JSON schema
g := llama.SchemaToGrammar(req.Format)
if g == nil {
return fmt.Errorf("invalid JSON schema in format")
}
req.Grammar = string(g)
}
}
if req.Options == nil {
opts := api.DefaultOptions()
req.Options = &opts
}
if err := s.sem.Acquire(ctx, 1); err != nil {
if errors.Is(err, context.Canceled) {
slog.Info("aborting completion request due to client closing the connection")
} else {
slog.Error("Failed to acquire semaphore", "error", err)
}
return err
}
defer s.sem.Release(1)
// put an upper limit on num_predict to avoid the model running on forever
if req.Options.NumPredict < 0 || req.Options.NumPredict > 10*s.options.NumCtx {
req.Options.NumPredict = 10 * s.options.NumCtx
}
// Make sure the server is ready
status, err := s.getServerStatusRetry(ctx)
if err != nil {
return err
} else if status != ServerStatusReady {
return fmt.Errorf("unexpected server status: %s", status)
}
// Handling JSON marshaling with special characters unescaped.
buffer := &bytes.Buffer{}
enc := json.NewEncoder(buffer)
enc.SetEscapeHTML(false)
if err := enc.Encode(req); err != nil {
return fmt.Errorf("failed to marshal data: %v", err)
}
endpoint := fmt.Sprintf("http://127.0.0.1:%d/completion", s.port)
serverReq, err := http.NewRequestWithContext(ctx, http.MethodPost, endpoint, buffer)
if err != nil {
return fmt.Errorf("error creating POST request: %v", err)
}
serverReq.Header.Set("Content-Type", "application/json")
res, err := http.DefaultClient.Do(serverReq)
if err != nil {
return fmt.Errorf("POST predict: %v", err)
}
defer res.Body.Close()
if res.StatusCode >= 400 {
bodyBytes, err := io.ReadAll(res.Body)
if err != nil {
return fmt.Errorf("failed reading llm error response: %w", err)
}
log.Printf("llm predict error: %s", bodyBytes)
return fmt.Errorf("%s", bodyBytes)
}
scanner := bufio.NewScanner(res.Body)
buf := make([]byte, 0, maxBufferSize)
scanner.Buffer(buf, maxBufferSize)
// keep track of the last token generated, this is used to abort if the model starts looping
var lastToken string
var tokenRepeat int
for scanner.Scan() {
select {
case <-ctx.Done():
// This handles the request cancellation
return ctx.Err()
default:
line := scanner.Bytes()
if len(line) == 0 {
continue
}
// slog.Debug("got line", "line", string(line))
evt, ok := bytes.CutPrefix(line, []byte("data: "))
if !ok {
evt = line
}
var c CompletionResponse
if err := json.Unmarshal(evt, &c); err != nil {
return fmt.Errorf("error unmarshalling llm prediction response: %v", err)
}
switch {
case strings.TrimSpace(c.Content) == lastToken:
tokenRepeat++
default:
lastToken = strings.TrimSpace(c.Content)
tokenRepeat = 0
}
// 30 picked as an arbitrary max token repeat limit, modify as needed
if tokenRepeat > 30 {
slog.Debug("prediction aborted, token repeat limit reached")
return ctx.Err()
}
if c.Content != "" {
fn(CompletionResponse{
Content: c.Content,
})
}
if c.Done {
fn(c)
return nil
}
}
}
if err := scanner.Err(); err != nil {
if strings.Contains(err.Error(), "unexpected EOF") || strings.Contains(err.Error(), "forcibly closed") {
s.Close()
var msg string
if s.status != nil && s.status.LastErrMsg != "" {
msg = s.status.LastErrMsg
} else {
msg = err.Error()
}
return fmt.Errorf("an error was encountered while running the model: %s", msg)
}
return fmt.Errorf("error reading llm response: %v", err)
}
return nil
}
type EmbeddingRequest struct {
Content string `json:"content"`
}
type EmbeddingResponse struct {
Embedding []float32 `json:"embedding"`
}
func (s *llmServer) Embedding(ctx context.Context, input string) ([]float32, error) {
if err := s.sem.Acquire(ctx, 1); err != nil {
if errors.Is(err, context.Canceled) {
slog.Info("aborting embedding request due to client closing the connection")
} else {
slog.Error("Failed to acquire semaphore", "error", err)
}
return nil, err
}
defer s.sem.Release(1)
// Make sure the server is ready
status, err := s.getServerStatusRetry(ctx)
if err != nil {
return nil, err
} else if status != ServerStatusReady {
return nil, fmt.Errorf("unexpected server status: %s", status)
}
data, err := json.Marshal(EmbeddingRequest{Content: input})
if err != nil {
return nil, fmt.Errorf("error marshaling embed data: %w", err)
}
r, err := http.NewRequestWithContext(ctx, http.MethodPost, fmt.Sprintf("http://127.0.0.1:%d/embedding", s.port), bytes.NewBuffer(data))
if err != nil {
return nil, fmt.Errorf("error creating embed request: %w", err)
}
r.Header.Set("Content-Type", "application/json")
resp, err := http.DefaultClient.Do(r)
if err != nil {
return nil, fmt.Errorf("do embedding request: %w", err)
}
defer resp.Body.Close()
body, err := io.ReadAll(resp.Body)
if err != nil {
return nil, fmt.Errorf("error reading embed response: %w", err)
}
if resp.StatusCode >= 400 {
log.Printf("llm embedding error: %s", body)
return nil, fmt.Errorf("%s", body)
}
var e EmbeddingResponse
if err := json.Unmarshal(body, &e); err != nil {
return nil, fmt.Errorf("unmarshal tokenize response: %w", err)
}
return e.Embedding, nil
}
type TokenizeRequest struct {
Content string `json:"content"`
}
type TokenizeResponse struct {
Tokens []int `json:"tokens"`
}
func (s *llmServer) Tokenize(ctx context.Context, content string) ([]int, error) {
s.llamaModelLock.Lock()
defer s.llamaModelLock.Unlock()
if s.llamaModel != nil {
return s.llamaModel.Tokenize(content, false, true)
}
if s.textProcessor != nil {
tokens, err := s.textProcessor.Encode(content, false)
if err != nil {
return nil, err
}
toks := make([]int, len(tokens))
for i, t := range tokens {
toks[i] = int(t)
}
return toks, nil
}
// not reached
return nil, fmt.Errorf("no tokenizer configured")
}
type DetokenizeRequest struct {
Tokens []int `json:"tokens"`
}
type DetokenizeResponse struct {
Content string `json:"content"`
}
func (s *llmServer) Detokenize(ctx context.Context, tokens []int) (string, error) {
s.llamaModelLock.Lock()
defer s.llamaModelLock.Unlock()
if s.llamaModel != nil {
var resp string
for _, token := range tokens {
resp += s.llamaModel.TokenToPiece(token)
}
return resp, nil
}
if s.textProcessor != nil {
toks := make([]int32, len(tokens))
for i, t := range tokens {
toks[i] = int32(t)
}
content, err := s.textProcessor.Decode(toks)
if err != nil {
return "", err
}
return content, nil
}
// not reached
return "", fmt.Errorf("no tokenizer configured")
}
func (s *llmServer) Close() error {
s.llamaModelLock.Lock()
if s.llamaModel != nil {
llama.FreeModel(s.llamaModel)
s.llamaModel = nil
}
s.llamaModelLock.Unlock()
if s.cmd != nil {
slog.Debug("stopping llama server")
if err := s.cmd.Process.Kill(); err != nil {
return err
}
// if ProcessState is already populated, Wait already completed, no need to wait again
if s.cmd.ProcessState == nil {
slog.Debug("waiting for llama server to exit")
<-s.done
}
slog.Debug("llama server stopped")
}
return nil
}
func (s *llmServer) EstimatedVRAM() uint64 {
return s.estimate.VRAMSize
}
func (s *llmServer) EstimatedTotal() uint64 {
return s.estimate.TotalSize
}
func (s *llmServer) EstimatedVRAMByGPU(gpuID string) uint64 {
for i, gpu := range s.gpus {
if gpu.ID == gpuID {
if i < len(s.estimate.GPUSizes) {
return s.estimate.GPUSizes[i]
}
}
}
return 0
}