mirror of
https://github.com/ollama/ollama.git
synced 2025-11-10 18:58:28 +01:00
378 lines
8.6 KiB
Go
378 lines
8.6 KiB
Go
package ggml
|
|
|
|
import (
|
|
"errors"
|
|
"os"
|
|
"testing"
|
|
|
|
"github.com/google/go-cmp/cmp"
|
|
"github.com/ollama/ollama/fs/ggml"
|
|
"github.com/ollama/ollama/ml"
|
|
)
|
|
|
|
func setup(tb testing.TB) ml.Context {
|
|
tb.Helper()
|
|
|
|
f, err := os.CreateTemp(tb.TempDir(), "*.bin")
|
|
if err != nil {
|
|
tb.Fatal(err)
|
|
}
|
|
defer f.Close()
|
|
|
|
if err := ggml.WriteGGUF(f, ggml.KV{"general.architecture": "test"}, nil); err != nil {
|
|
tb.Fatal(err)
|
|
}
|
|
|
|
b, err := ml.NewBackend(f.Name(), ml.BackendParams{AllocMemory: true})
|
|
if err != nil {
|
|
tb.Fatal(err)
|
|
}
|
|
|
|
ctx := b.NewContext().Input()
|
|
|
|
tb.Cleanup(func() {
|
|
ctx.Close()
|
|
b.Close()
|
|
})
|
|
|
|
return ctx
|
|
}
|
|
|
|
func TestInferShape(t *testing.T) {
|
|
cases := []struct {
|
|
name string
|
|
input []int
|
|
want []int
|
|
err error
|
|
}{
|
|
{
|
|
name: "no inferred shape",
|
|
input: []int{2, 3, 4},
|
|
want: []int{2, 3, 4},
|
|
},
|
|
{
|
|
name: "infer begin",
|
|
input: []int{-1, 3, 4},
|
|
want: []int{2, 3, 4},
|
|
},
|
|
{
|
|
name: "infer mid",
|
|
input: []int{2, -1, 4},
|
|
want: []int{2, 3, 4},
|
|
},
|
|
{
|
|
name: "infer end",
|
|
input: []int{2, 3, -1},
|
|
want: []int{2, 3, 4},
|
|
},
|
|
{
|
|
name: "too many inferred dims",
|
|
input: []int{-1, 3, -1},
|
|
err: errors.New("only one dimension can be inferred"),
|
|
},
|
|
{
|
|
name: "infer gather",
|
|
input: []int{2, -1},
|
|
want: []int{2, 12},
|
|
},
|
|
{
|
|
name: "infer gather all",
|
|
input: []int{-1},
|
|
want: []int{24},
|
|
},
|
|
{
|
|
name: "infer split",
|
|
input: []int{2, -1, 3, 2},
|
|
want: []int{2, 2, 3, 2},
|
|
},
|
|
{
|
|
name: "indivisible infer",
|
|
input: []int{2, -1, 2, 4},
|
|
err: errors.New("cannot infer dimension"),
|
|
},
|
|
{
|
|
name: "infer zero dim",
|
|
input: []int{2, 0, 4},
|
|
err: errors.New("dimension cannot be zero"),
|
|
},
|
|
}
|
|
|
|
ctx := setup(t)
|
|
tensor, ok := ctx.Empty(ml.DTypeF32, 2, 3, 4).(*Tensor)
|
|
if !ok {
|
|
t.Fatal("expected *Tensor")
|
|
}
|
|
|
|
for _, tt := range cases {
|
|
t.Run(tt.name, func(t *testing.T) {
|
|
defer func() {
|
|
if r := recover(); r == nil && tt.err == nil {
|
|
// all good
|
|
} else if r != nil && tt.err == nil {
|
|
t.Errorf("unexpected panic: %v", r)
|
|
} else if r == nil && tt.err != nil {
|
|
t.Errorf("expected panic but did not get one: %v", tt.err)
|
|
} else if errStr, ok := r.(string); ok && errStr != tt.err.Error() {
|
|
t.Errorf("expected panic %q but got %q", tt.err.Error(), errStr)
|
|
}
|
|
}()
|
|
|
|
inferShape(tensor, tt.input)
|
|
if diff := cmp.Diff(tt.want, tt.input); diff != "" {
|
|
t.Errorf("%s: shape mismatch (-want +got):\n%s", tt.name, diff)
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
func EquateTensors(ctx ml.Context) cmp.Option {
|
|
return cmp.Comparer(func(x, y ml.Tensor) bool {
|
|
ctx.Forward(x, y).Compute(x, y)
|
|
return cmp.Equal(x.Shape(), y.Shape()) &&
|
|
cmp.Equal(x.DType(), y.DType()) &&
|
|
cmp.Equal(x.Bytes(), y.Bytes())
|
|
})
|
|
}
|
|
|
|
func TestMulmat(t *testing.T) {
|
|
cases := []struct {
|
|
name string
|
|
a, b, c func(ml.Context) ml.Tensor
|
|
}{
|
|
{
|
|
name: "vector x vector",
|
|
a: func(ctx ml.Context) ml.Tensor {
|
|
return ctx.Arange(0, 3, 1, ml.DTypeF32)
|
|
},
|
|
b: func(ctx ml.Context) ml.Tensor {
|
|
return ctx.Arange(0, 3, 1, ml.DTypeF32)
|
|
},
|
|
c: func(ctx ml.Context) ml.Tensor {
|
|
return ctx.FromFloats([]float32{5}, 1)
|
|
},
|
|
},
|
|
{
|
|
name: "vector x matrix",
|
|
a: func(ctx ml.Context) ml.Tensor {
|
|
return ctx.Arange(0, 4, 1, ml.DTypeF32)
|
|
},
|
|
b: func(ctx ml.Context) ml.Tensor {
|
|
return ctx.Arange(0, 12, 1, ml.DTypeF32).Reshape(ctx, 4, 3)
|
|
},
|
|
c: func(ctx ml.Context) ml.Tensor {
|
|
return ctx.FromFloats([]float32{
|
|
14, 38, 62,
|
|
}, 1, 3)
|
|
},
|
|
},
|
|
{
|
|
name: "broadcast vector x batched matrix",
|
|
a: func(ctx ml.Context) ml.Tensor {
|
|
return ctx.Arange(0, 4, 1, ml.DTypeF32)
|
|
},
|
|
b: func(ctx ml.Context) ml.Tensor {
|
|
return ctx.Arange(0, 10*3*4, 1, ml.DTypeF32).Reshape(ctx, 4, 3, 10)
|
|
},
|
|
c: func(ctx ml.Context) ml.Tensor {
|
|
return ctx.FromFloats([]float32{
|
|
14, 38, 62,
|
|
86, 110, 134,
|
|
158, 182, 206,
|
|
230, 254, 278,
|
|
302, 326, 350,
|
|
374, 398, 422,
|
|
446, 470, 494,
|
|
518, 542, 566,
|
|
590, 614, 638,
|
|
662, 686, 710,
|
|
}, 1, 3, 10)
|
|
},
|
|
},
|
|
{
|
|
name: "batched matrix x batched matrix",
|
|
a: func(ctx ml.Context) ml.Tensor {
|
|
return ctx.Arange(0, 4*5*10, 1, ml.DTypeF32).Reshape(ctx, 4, 5, 10)
|
|
},
|
|
b: func(ctx ml.Context) ml.Tensor {
|
|
return ctx.Arange(0, 4*3*10, 1, ml.DTypeF32).Reshape(ctx, 4, 3, 10)
|
|
},
|
|
c: func(ctx ml.Context) ml.Tensor {
|
|
return ctx.FromFloats([]float32{
|
|
14, 38, 62, 86, 110,
|
|
38, 126, 214, 302, 390,
|
|
62, 214, 366, 518, 670,
|
|
|
|
1166, 1382, 1598, 1814, 2030,
|
|
1510, 1790, 2070, 2350, 2630,
|
|
1854, 2198, 2542, 2886, 3230,
|
|
|
|
4238, 4646, 5054, 5462, 5870,
|
|
4902, 5374, 5846, 6318, 6790,
|
|
5566, 6102, 6638, 7174, 7710,
|
|
|
|
9230, 9830, 10430, 11030, 11630,
|
|
10214, 10878, 11542, 12206, 12870,
|
|
11198, 11926, 12654, 13382, 14110,
|
|
|
|
16142, 16934, 17726, 18518, 19310,
|
|
17446, 18302, 19158, 20014, 20870,
|
|
18750, 19670, 20590, 21510, 22430,
|
|
|
|
24974, 25958, 26942, 27926, 28910,
|
|
26598, 27646, 28694, 29742, 30790,
|
|
28222, 29334, 30446, 31558, 32670,
|
|
|
|
35726, 36902, 38078, 39254, 40430,
|
|
37670, 38910, 40150, 41390, 42630,
|
|
39614, 40918, 42222, 43526, 44830,
|
|
|
|
48398, 49766, 51134, 52502, 53870,
|
|
50662, 52094, 53526, 54958, 56390,
|
|
52926, 54422, 55918, 57414, 58910,
|
|
|
|
62990, 64550, 66110, 67670, 69230,
|
|
65574, 67198, 68822, 70446, 72070,
|
|
68158, 69846, 71534, 73222, 74910,
|
|
|
|
79502, 81254, 83006, 84758, 86510,
|
|
82406, 84222, 86038, 87854, 89670,
|
|
85310, 87190, 89070, 90950, 92830,
|
|
}, 5, 3, 10)
|
|
},
|
|
},
|
|
{
|
|
name: "broadcast matrix x batched matrix",
|
|
a: func(ctx ml.Context) ml.Tensor {
|
|
return ctx.Arange(0, 4*5, 1, ml.DTypeF32).Reshape(ctx, 4, 5)
|
|
},
|
|
b: func(ctx ml.Context) ml.Tensor {
|
|
return ctx.Arange(0, 4*3*10, 1, ml.DTypeF32).Reshape(ctx, 4, 3, 10)
|
|
},
|
|
c: func(ctx ml.Context) ml.Tensor {
|
|
return ctx.FromFloats([]float32{
|
|
14, 38, 62, 86, 110,
|
|
38, 126, 214, 302, 390,
|
|
62, 214, 366, 518, 670,
|
|
|
|
86, 302, 518, 734, 950,
|
|
110, 390, 670, 950, 1230,
|
|
134, 478, 822, 1166, 1510,
|
|
|
|
158, 566, 974, 1382, 1790,
|
|
182, 654, 1126, 1598, 2070,
|
|
206, 742, 1278, 1814, 2350,
|
|
|
|
230, 830, 1430, 2030, 2630,
|
|
254, 918, 1582, 2246, 2910,
|
|
278, 1006, 1734, 2462, 3190,
|
|
|
|
302, 1094, 1886, 2678, 3470,
|
|
326, 1182, 2038, 2894, 3750,
|
|
350, 1270, 2190, 3110, 4030,
|
|
|
|
374, 1358, 2342, 3326, 4310,
|
|
398, 1446, 2494, 3542, 4590,
|
|
422, 1534, 2646, 3758, 4870,
|
|
|
|
446, 1622, 2798, 3974, 5150,
|
|
470, 1710, 2950, 4190, 5430,
|
|
494, 1798, 3102, 4406, 5710,
|
|
|
|
518, 1886, 3254, 4622, 5990,
|
|
542, 1974, 3406, 4838, 6270,
|
|
566, 2062, 3558, 5054, 6550,
|
|
|
|
590, 2150, 3710, 5270, 6830,
|
|
614, 2238, 3862, 5486, 7110,
|
|
638, 2326, 4014, 5702, 7390,
|
|
|
|
662, 2414, 4166, 5918, 7670,
|
|
686, 2502, 4318, 6134, 7950,
|
|
710, 2590, 4470, 6350, 8230,
|
|
}, 5, 3, 10)
|
|
},
|
|
},
|
|
}
|
|
|
|
for _, tt := range cases {
|
|
t.Run(tt.name, func(t *testing.T) {
|
|
ctx := setup(t)
|
|
a, b := tt.a(ctx), tt.b(ctx)
|
|
c := a.Mulmat(ctx, b)
|
|
if diff := cmp.Diff(tt.c(ctx), c, EquateTensors(ctx)); diff != "" {
|
|
t.Errorf("MulMat() result mismatch (-want +got):\n%s", diff)
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
func TestPermute(t *testing.T) {
|
|
cases := []struct {
|
|
name string
|
|
input func(ml.Context) ml.Tensor
|
|
shape []int
|
|
want func(ml.Context) ml.Tensor
|
|
}{
|
|
{
|
|
name: "transpose",
|
|
input: func(ctx ml.Context) ml.Tensor {
|
|
return ctx.Arange(0, 3*2, 1, ml.DTypeF32).Reshape(ctx, 3, 2)
|
|
},
|
|
shape: []int{1, 0, 2, 3},
|
|
want: func(ctx ml.Context) ml.Tensor {
|
|
return ctx.FromFloats([]float32{
|
|
0, 3,
|
|
1, 4,
|
|
2, 5,
|
|
}, 2, 3)
|
|
},
|
|
},
|
|
{
|
|
name: "transpose fill dims",
|
|
input: func(ctx ml.Context) ml.Tensor {
|
|
return ctx.Arange(0, 3*2, 1, ml.DTypeF32).Reshape(ctx, 3, 2)
|
|
},
|
|
shape: []int{1, 0},
|
|
want: func(ctx ml.Context) ml.Tensor {
|
|
return ctx.FromFloats([]float32{
|
|
0, 3,
|
|
1, 4,
|
|
2, 5,
|
|
}, 2, 3)
|
|
},
|
|
},
|
|
{
|
|
name: "permute 3d",
|
|
input: func(ctx ml.Context) ml.Tensor {
|
|
return ctx.Arange(0, 5*3*2, 1, ml.DTypeF32).Reshape(ctx, 2, 3, 5)
|
|
},
|
|
shape: []int{2, 0, 1, 3},
|
|
want: func(ctx ml.Context) ml.Tensor {
|
|
return ctx.FromFloats([]float32{
|
|
0, 2, 4,
|
|
6, 8, 10,
|
|
12, 14, 16,
|
|
18, 20, 22,
|
|
24, 26, 28,
|
|
|
|
1, 3, 5,
|
|
7, 9, 11,
|
|
13, 15, 17,
|
|
19, 21, 23,
|
|
25, 27, 29,
|
|
}, 3, 5, 2)
|
|
},
|
|
},
|
|
}
|
|
|
|
for _, tt := range cases {
|
|
t.Run(tt.name, func(t *testing.T) {
|
|
ctx := setup(t)
|
|
got := tt.input(ctx).Permute(ctx, tt.shape...).Contiguous(ctx)
|
|
if diff := cmp.Diff(tt.want(ctx), got, EquateTensors(ctx)); diff != "" {
|
|
t.Errorf("Permute() result mismatch (-want +got):\n%s", diff)
|
|
}
|
|
})
|
|
}
|
|
}
|