mirror of
https://github.com/ollama/ollama.git
synced 2025-11-10 21:37:14 +01:00
182 lines
5.1 KiB
Go
182 lines
5.1 KiB
Go
package bert
|
|
|
|
import (
|
|
"cmp"
|
|
"math"
|
|
|
|
"github.com/ollama/ollama/fs"
|
|
"github.com/ollama/ollama/ml"
|
|
"github.com/ollama/ollama/ml/nn"
|
|
"github.com/ollama/ollama/ml/nn/pooling"
|
|
"github.com/ollama/ollama/model"
|
|
"github.com/ollama/ollama/model/input"
|
|
)
|
|
|
|
type Model struct {
|
|
model.Base
|
|
model.TextProcessor
|
|
|
|
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
|
|
TypeEmbedding *nn.Embedding `gguf:"token_types"`
|
|
PositionEmbedding *nn.Embedding `gguf:"position_embd"`
|
|
TokenEmbeddingNorm *nn.LayerNorm `gguf:"token_embd_norm"`
|
|
|
|
Layers []EncoderLayer `gguf:"blk"`
|
|
|
|
Options
|
|
}
|
|
|
|
// Forward implements model.Model.
|
|
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
|
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
|
|
hiddenStates = hiddenStates.Add(ctx, m.TypeEmbedding.Weight.View(ctx, 0, m.hiddenSize))
|
|
hiddenStates = hiddenStates.Add(ctx, m.PositionEmbedding.Forward(ctx, ctx.Input().FromInts(batch.Positions, len(batch.Positions))))
|
|
hiddenStates = m.TokenEmbeddingNorm.Forward(ctx, hiddenStates, m.eps)
|
|
|
|
for _, layer := range m.Layers {
|
|
hiddenStates = layer.Forward(ctx, hiddenStates, &m.Options)
|
|
}
|
|
|
|
hiddenStates = m.poolingType.Forward(ctx, hiddenStates)
|
|
if m.normalize {
|
|
hiddenStates = hiddenStates.L2Norm(ctx, 1e-12)
|
|
}
|
|
|
|
return hiddenStates, nil
|
|
}
|
|
|
|
type EncoderLayer struct {
|
|
*Attention
|
|
AttentionNorm *nn.LayerNorm `gguf:"attn_output_norm"`
|
|
|
|
*MLP
|
|
MLPNorm *nn.LayerNorm `gguf:"layer_output_norm"`
|
|
}
|
|
|
|
func (e *EncoderLayer) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
|
|
// Attention
|
|
residual := hiddenStates
|
|
hiddenStates = e.Attention.Forward(ctx, hiddenStates, opts)
|
|
hiddenStates = hiddenStates.Add(ctx, residual)
|
|
hiddenStates = e.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
|
|
|
|
// MLP
|
|
residual = hiddenStates
|
|
hiddenStates = e.MLP.Forward(ctx, hiddenStates, opts)
|
|
hiddenStates = hiddenStates.Add(ctx, residual)
|
|
hiddenStates = e.MLPNorm.Forward(ctx, hiddenStates, opts.eps)
|
|
|
|
return hiddenStates
|
|
}
|
|
|
|
type Attention struct {
|
|
Query *nn.Linear `gguf:"attn_q"`
|
|
QueryNorm *nn.LayerNorm `gguf:"attn_q_norm"`
|
|
|
|
Key *nn.Linear `gguf:"attn_k"`
|
|
KeyNorm *nn.LayerNorm `gguf:"attn_k_norm"`
|
|
|
|
Value *nn.Linear `gguf:"attn_v"`
|
|
|
|
Output *nn.Linear `gguf:"attn_output"`
|
|
}
|
|
|
|
func (a *Attention) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
|
|
batchSize := hiddenStates.Dim(1)
|
|
|
|
query := a.Query.Forward(ctx, hiddenStates)
|
|
if a.QueryNorm != nil {
|
|
query = a.QueryNorm.Forward(ctx, query, opts.eps)
|
|
}
|
|
query = query.Reshape(ctx, opts.headDim(), opts.numHeads, batchSize)
|
|
|
|
key := a.Key.Forward(ctx, hiddenStates)
|
|
if a.KeyNorm != nil {
|
|
key = a.KeyNorm.Forward(ctx, key, opts.eps)
|
|
}
|
|
key = key.Reshape(ctx, opts.headDim(), cmp.Or(opts.numKVHeads, opts.numHeads), batchSize)
|
|
|
|
value := a.Value.Forward(ctx, hiddenStates)
|
|
value = value.Reshape(ctx, opts.headDim(), cmp.Or(opts.numKVHeads, opts.numHeads), batchSize)
|
|
|
|
attention := nn.Attention(ctx, query, key, value, 1/math.Sqrt(float64(opts.headDim())), nil)
|
|
attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)
|
|
return a.Output.Forward(ctx, attention)
|
|
}
|
|
|
|
type MLP struct {
|
|
Up *nn.Linear `gguf:"ffn_up"`
|
|
Down *nn.Linear `gguf:"ffn_down"`
|
|
}
|
|
|
|
func (m *MLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
|
|
return m.Down.Forward(ctx, m.Up.Forward(ctx, hiddenStates).GELU(ctx))
|
|
}
|
|
|
|
type Options struct {
|
|
hiddenSize,
|
|
numHeads,
|
|
numKVHeads,
|
|
keyLength,
|
|
valueLength int
|
|
poolingType pooling.Type
|
|
eps float32
|
|
normalize bool
|
|
}
|
|
|
|
func (o Options) headDim() int {
|
|
return cmp.Or(o.keyLength, o.valueLength, o.hiddenSize/o.numHeads)
|
|
}
|
|
|
|
func New(c fs.Config) (model.Model, error) {
|
|
var processor model.TextProcessor
|
|
switch c.String("tokenizer.ggml.model", "bert") {
|
|
case "bert":
|
|
processor = model.NewWordPiece(
|
|
&model.Vocabulary{
|
|
Values: c.Strings("tokenizer.ggml.tokens"),
|
|
Scores: c.Floats("tokenizer.ggml.scores"),
|
|
Types: c.Ints("tokenizer.ggml.token_type"),
|
|
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
|
|
BOS: []int32{
|
|
int32(cmp.Or(
|
|
c.Uint("tokenizer.ggml.cls_token_id"),
|
|
c.Uint("tokenizer.ggml.bos_token_id"),
|
|
)),
|
|
},
|
|
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", true),
|
|
EOS: []int32{
|
|
int32(cmp.Or(
|
|
c.Uint("tokenizer.ggml.separator_token_id"),
|
|
//nolint:misspell
|
|
// NOTE: "seperator_token_id" is a typo in model metadata but we need to
|
|
// support it for compatibility.
|
|
c.Uint("tokenizer.ggml.seperator_token_id"),
|
|
c.Uint("tokenizer.ggml.eos_token_id"),
|
|
)),
|
|
},
|
|
},
|
|
)
|
|
default:
|
|
return nil, model.ErrUnsupportedTokenizer
|
|
}
|
|
|
|
return &Model{
|
|
TextProcessor: processor,
|
|
Layers: make([]EncoderLayer, c.Uint("block_count")),
|
|
Options: Options{
|
|
hiddenSize: int(c.Uint("embedding_length")),
|
|
numHeads: int(c.Uint("attention.head_count")),
|
|
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
|
eps: c.Float("attention.layer_norm_epsilon"),
|
|
poolingType: pooling.Type(c.Uint("pooling_type")),
|
|
normalize: c.Bool("normalize_embeddings", true),
|
|
},
|
|
}, nil
|
|
}
|
|
|
|
func init() {
|
|
model.Register("bert", New)
|
|
model.Register("bert_embed", New)
|
|
}
|