mirror of
https://github.com/ollama/ollama.git
synced 2025-11-11 17:07:04 +01:00
* feat: Bump llama.cpp to df1b612 Branch: LlamaCPPBump-GraniteDocling Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix(mtmd): Correctly encode text chunks during mtmd tokenization There can be text chunks that appear interspersed with the image embeddings that contain template delimiter tokens for some models. These need to be correctly translated to text tokens. Branch: LlamaCPPBump-GraniteDocling Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * tests: Use MtmdChunk in image_test Branch: LlamaCPPBump-GraniteDocling Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix unnecessary conversion linting Branch: LlamaCPPBump-GraniteDocling Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix(ggml): Revert changes to ggml_hip.cpp These changes were done largely by our code assistant and are likely wrong Branch: LlamaCPPBump-GraniteDocling Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Revert changes in mem_nvml.cpp Branch: LlamaCPPBump-GraniteDocling Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Update sync point to 1deee0 This brings in several more optimization commits and model support for EmbeddingGemma Branch: LlamaCPPBump-GraniteDocling Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Update patches for 1deee0 Branch: LlamaCPPBump-GraniteDocling Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: sync for bump to 1deee0 Branch: LlamaCPPBump-GraniteDocling Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Bad patch updates with errant `+` Branch: LlamaCPPBump-GraniteDocling Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Bump llama.cpp/ggml to 7049736 Branch: LlamaCPPBump-GraniteDocling Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: format-patches after latest bump Branch: LlamaCPPBump-GraniteDocling Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
829 lines
27 KiB
C++
Vendored
829 lines
27 KiB
C++
Vendored
#pragma once
|
|
|
|
#include "llama-arch.h"
|
|
#include "llama-batch.h"
|
|
#include "llama-hparams.h"
|
|
#include "llama-adapter.h"
|
|
|
|
#include <cstdint>
|
|
#include <vector>
|
|
#include <memory>
|
|
#include <set>
|
|
#include <functional>
|
|
|
|
struct ggml_cgraph;
|
|
struct ggml_context;
|
|
struct ggml_tensor;
|
|
|
|
struct llama_cparams;
|
|
|
|
struct llama_memory_context_i;
|
|
|
|
class llama_kv_cache_context;
|
|
class llama_kv_cache_iswa_context;
|
|
class llama_memory_recurrent_context;
|
|
class llama_memory_hybrid_context;
|
|
|
|
// certain models (typically multi-modal) can produce different types of graphs
|
|
enum llm_graph_type {
|
|
LLM_GRAPH_TYPE_DEFAULT,
|
|
LLM_GRAPH_TYPE_ENCODER,
|
|
LLM_GRAPH_TYPE_DECODER,
|
|
};
|
|
|
|
enum llm_ffn_op_type {
|
|
LLM_FFN_SILU,
|
|
LLM_FFN_GELU,
|
|
LLM_FFN_RELU,
|
|
LLM_FFN_RELU_SQR,
|
|
LLM_FFN_SWIGLU,
|
|
LLM_FFN_GEGLU,
|
|
LLM_FFN_REGLU,
|
|
LLM_FFN_SWIGLU_OAI_MOE,
|
|
};
|
|
|
|
enum llm_ffn_gate_type {
|
|
LLM_FFN_SEQ,
|
|
LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
|
|
};
|
|
|
|
enum llm_norm_type {
|
|
LLM_NORM,
|
|
LLM_NORM_RMS,
|
|
LLM_NORM_GROUP,
|
|
};
|
|
|
|
// TODO: tmp - need something better to pass the data from the encoder to the decoder
|
|
struct llama_cross {
|
|
// the output embeddings from the encoder as a ggml tensor
|
|
// TODO: this needs more work to be correct, for now copy the embeddings data to host memory
|
|
// ref: https://github.com/ggml-org/llama.cpp/pull/11213#discussion_r1969892524
|
|
//ggml_tensor * t_embd = nullptr;
|
|
|
|
int64_t n_embd = 0;
|
|
int64_t n_enc = 0;
|
|
|
|
// embeddings data copied to host memory (tmp)
|
|
std::vector<float> v_embd;
|
|
|
|
// needed to construct the cross-attention mask in the decoder
|
|
std::vector<std::set<llama_seq_id>> seq_ids_enc;
|
|
};
|
|
|
|
struct llm_graph_params;
|
|
|
|
//
|
|
// llm_graph_input
|
|
//
|
|
|
|
class llm_graph_input_i {
|
|
public:
|
|
llm_graph_input_i() {
|
|
const char * LLAMA_GRAPH_INPUT_DEBUG = getenv("LLAMA_GRAPH_INPUT_DEBUG");
|
|
debug = LLAMA_GRAPH_INPUT_DEBUG ? atoi(LLAMA_GRAPH_INPUT_DEBUG) : 0;
|
|
}
|
|
|
|
virtual ~llm_graph_input_i() = default;
|
|
|
|
virtual void set_input(const llama_ubatch * ubatch) = 0;
|
|
|
|
// return true if the resulting input tensors using the provided graph parameters would be
|
|
// the same as the previous input tensors that we have currently stored in the object
|
|
virtual bool can_reuse(const llm_graph_params & params) {
|
|
// returning false here by default will prevent from reusing the graph if the check
|
|
// for the input type has not been implemented yet
|
|
GGML_UNUSED(params);
|
|
return false;
|
|
}
|
|
protected:
|
|
// env: LLAMA_GRAPH_INPUT_DEBUG
|
|
int debug = 0;
|
|
};
|
|
|
|
using llm_graph_input_ptr = std::unique_ptr<llm_graph_input_i>;
|
|
|
|
class llm_graph_input_embd : public llm_graph_input_i {
|
|
public:
|
|
llm_graph_input_embd() = default;
|
|
virtual ~llm_graph_input_embd() = default;
|
|
|
|
void set_input(const llama_ubatch * ubatch) override;
|
|
|
|
bool can_reuse(const llm_graph_params & params) override;
|
|
|
|
ggml_tensor * tokens = nullptr; // I32 [n_batch]
|
|
ggml_tensor * embd = nullptr; // F32 [n_embd, n_batch]
|
|
};
|
|
|
|
class llm_graph_input_pos : public llm_graph_input_i {
|
|
public:
|
|
llm_graph_input_pos(uint32_t n_pos_per_embd) : n_pos_per_embd(n_pos_per_embd) {}
|
|
virtual ~llm_graph_input_pos() = default;
|
|
|
|
void set_input(const llama_ubatch * ubatch) override;
|
|
|
|
bool can_reuse(const llm_graph_params & params) override;
|
|
|
|
ggml_tensor * pos = nullptr; // I32 [n_batch]
|
|
|
|
const uint32_t n_pos_per_embd = 1;
|
|
};
|
|
|
|
// temperature tuning, used by llama4
|
|
class llm_graph_input_attn_temp : public llm_graph_input_i {
|
|
public:
|
|
llm_graph_input_attn_temp(uint32_t n_attn_temp_floor_scale, float f_attn_temp_scale)
|
|
: n_attn_temp_floor_scale(n_attn_temp_floor_scale), f_attn_temp_scale(f_attn_temp_scale) {}
|
|
virtual ~llm_graph_input_attn_temp() = default;
|
|
|
|
void set_input(const llama_ubatch * ubatch) override;
|
|
|
|
ggml_tensor * attn_scale = nullptr; // F32 [n_batch]
|
|
|
|
const uint32_t n_attn_temp_floor_scale;
|
|
const float f_attn_temp_scale;
|
|
};
|
|
|
|
class llm_graph_input_pos_bucket : public llm_graph_input_i {
|
|
public:
|
|
llm_graph_input_pos_bucket(const llama_hparams & hparams) : hparams(hparams) {}
|
|
virtual ~llm_graph_input_pos_bucket() = default;
|
|
|
|
void set_input(const llama_ubatch * ubatch) override;
|
|
|
|
ggml_tensor * pos_bucket = nullptr; // I32 [n_batch, n_batch]
|
|
|
|
const llama_hparams hparams;
|
|
};
|
|
|
|
class llm_graph_input_pos_bucket_kv : public llm_graph_input_i {
|
|
public:
|
|
llm_graph_input_pos_bucket_kv(
|
|
const llama_hparams & hparams,
|
|
const llama_kv_cache_context * mctx) : hparams(hparams), mctx(mctx) {}
|
|
virtual ~llm_graph_input_pos_bucket_kv() = default;
|
|
|
|
void set_input(const llama_ubatch * ubatch) override;
|
|
|
|
ggml_tensor * pos_bucket = nullptr; // I32 [n_kv, n_batch]
|
|
|
|
const llama_hparams hparams;
|
|
|
|
const llama_kv_cache_context * mctx;
|
|
};
|
|
|
|
class llm_graph_input_out_ids : public llm_graph_input_i {
|
|
public:
|
|
llm_graph_input_out_ids(
|
|
const llama_hparams & hparams,
|
|
const llama_cparams & cparams,
|
|
uint32_t n_outputs) : hparams(hparams), cparams(cparams), n_outputs(n_outputs) {}
|
|
virtual ~llm_graph_input_out_ids() = default;
|
|
|
|
void set_input(const llama_ubatch * ubatch) override;
|
|
|
|
bool can_reuse(const llm_graph_params & params) override;
|
|
|
|
ggml_tensor * out_ids; // I32 [n_outputs]
|
|
|
|
const llama_hparams hparams;
|
|
const llama_cparams cparams;
|
|
|
|
const uint32_t n_outputs;
|
|
};
|
|
|
|
class llm_graph_input_mean : public llm_graph_input_i {
|
|
public:
|
|
llm_graph_input_mean(const llama_cparams & cparams) : cparams(cparams) {}
|
|
virtual ~llm_graph_input_mean() = default;
|
|
|
|
void set_input(const llama_ubatch * ubatch) override;
|
|
|
|
ggml_tensor * mean; // F32 [n_batch, n_batch]
|
|
|
|
const llama_cparams cparams;
|
|
};
|
|
|
|
class llm_graph_input_cls : public llm_graph_input_i {
|
|
public:
|
|
llm_graph_input_cls(const llama_cparams & cparams, const llm_arch arch) : cparams(cparams), arch(arch) {}
|
|
virtual ~llm_graph_input_cls() = default;
|
|
|
|
void set_input(const llama_ubatch * ubatch) override;
|
|
|
|
ggml_tensor * cls; // I32 [n_batch]
|
|
|
|
const llama_cparams cparams;
|
|
const llm_arch arch;
|
|
};
|
|
|
|
class llm_graph_input_rs : public llm_graph_input_i {
|
|
public:
|
|
llm_graph_input_rs(const llama_memory_recurrent_context * mctx) : mctx(mctx) {}
|
|
virtual ~llm_graph_input_rs() = default;
|
|
|
|
void set_input(const llama_ubatch * ubatch) override;
|
|
|
|
ggml_tensor * s_copy; // I32 [n_rs]
|
|
|
|
// views of s_copy, computed once per graph
|
|
// and shared across layers which use build_rs
|
|
ggml_tensor * s_copy_main; // I32 [n_seqs]
|
|
ggml_tensor * s_copy_extra; // I32 [n_rs - n_seqs]
|
|
|
|
const llama_memory_recurrent_context * mctx;
|
|
};
|
|
|
|
class llm_graph_input_cross_embd : public llm_graph_input_i {
|
|
public:
|
|
llm_graph_input_cross_embd(
|
|
const llama_cross * cross) : cross(cross) {}
|
|
virtual ~llm_graph_input_cross_embd() = default;
|
|
|
|
void set_input(const llama_ubatch * ubatch) override;
|
|
|
|
ggml_tensor * cross_embd; // F32 [n_embd, n_outputs_enc]
|
|
|
|
const llama_cross * cross;
|
|
};
|
|
|
|
class llm_graph_input_attn_no_cache : public llm_graph_input_i {
|
|
public:
|
|
llm_graph_input_attn_no_cache(const llama_hparams & hparams, const llama_cparams & cparams) :
|
|
hparams(hparams),
|
|
cparams(cparams) {
|
|
}
|
|
~llm_graph_input_attn_no_cache() = default;
|
|
|
|
void set_input(const llama_ubatch * ubatch) override;
|
|
|
|
ggml_tensor * get_kq_mask() const { return kq_mask_cnv; }
|
|
|
|
ggml_tensor * kq_mask = nullptr; // F32 [n_tokens, n_batch, 1, 1]
|
|
ggml_tensor * kq_mask_cnv = nullptr; // [n_tokens, n_batch, 1, 1]
|
|
|
|
const llama_hparams hparams;
|
|
const llama_cparams cparams;
|
|
};
|
|
|
|
class llm_graph_input_attn_kv : public llm_graph_input_i {
|
|
public:
|
|
llm_graph_input_attn_kv(
|
|
const llama_hparams & hparams,
|
|
const llama_cparams & cparams,
|
|
const llama_kv_cache_context * mctx) :
|
|
hparams(hparams),
|
|
cparams(cparams),
|
|
mctx(mctx) {
|
|
}
|
|
~llm_graph_input_attn_kv() = default;
|
|
|
|
void set_input(const llama_ubatch * ubatch) override;
|
|
|
|
bool can_reuse(const llm_graph_params & params) override;
|
|
|
|
ggml_tensor * get_k_idxs() const { return self_k_idxs; }
|
|
ggml_tensor * get_v_idxs() const { return self_v_idxs; }
|
|
|
|
ggml_tensor * get_kq_mask() const { return self_kq_mask_cnv; }
|
|
|
|
ggml_tensor * self_k_idxs = nullptr; // I64 [n_batch]
|
|
ggml_tensor * self_v_idxs = nullptr; // I64 [n_batch] or [n_batch*n_embd_v_gqa]
|
|
|
|
ggml_tensor * self_kq_mask = nullptr; // F32 [n_kv, n_batch/n_stream, 1, n_stream]
|
|
ggml_tensor * self_kq_mask_cnv = nullptr; // [n_kv, n_batch/n_stream, 1, n_stream]
|
|
|
|
// note: these have to be copies because in order to be able to reuse a graph, its inputs
|
|
// need to carry these parameters with them. otherwise, they can point to freed
|
|
// llm_graph_params from a previous batch, causing stack-use-after-return
|
|
const llama_hparams hparams;
|
|
const llama_cparams cparams;
|
|
|
|
const llama_kv_cache_context * mctx;
|
|
};
|
|
|
|
class llm_graph_input_attn_kv_iswa : public llm_graph_input_i {
|
|
public:
|
|
llm_graph_input_attn_kv_iswa(
|
|
const llama_hparams & hparams,
|
|
const llama_cparams & cparams,
|
|
const llama_kv_cache_iswa_context * mctx) :
|
|
hparams(hparams),
|
|
cparams(cparams),
|
|
mctx(mctx) {
|
|
}
|
|
~llm_graph_input_attn_kv_iswa() = default;
|
|
|
|
void set_input(const llama_ubatch * ubatch) override;
|
|
|
|
bool can_reuse(const llm_graph_params & params) override;
|
|
|
|
ggml_tensor * get_k_idxs() const { return self_k_idxs; }
|
|
ggml_tensor * get_v_idxs() const { return self_v_idxs; }
|
|
ggml_tensor * get_k_idxs_swa() const { return self_k_idxs_swa; }
|
|
ggml_tensor * get_v_idxs_swa() const { return self_v_idxs_swa; }
|
|
|
|
ggml_tensor * get_kq_mask() const { return self_kq_mask_cnv; }
|
|
ggml_tensor * get_kq_mask_swa() const { return self_kq_mask_swa_cnv; }
|
|
|
|
ggml_tensor * self_k_idxs = nullptr; // I64 [n_batch]
|
|
ggml_tensor * self_v_idxs = nullptr; // I64 [n_batch] or [n_batch*n_embd_v_gqa]
|
|
ggml_tensor * self_k_idxs_swa = nullptr; // I64 [n_batch]
|
|
ggml_tensor * self_v_idxs_swa = nullptr; // I64 [n_batch] or [n_batch*n_embd_v_gqa]
|
|
|
|
ggml_tensor * self_kq_mask = nullptr; // F32 [n_kv, n_batch/n_stream, 1, n_stream]
|
|
ggml_tensor * self_kq_mask_cnv = nullptr; // [n_kv, n_batch/n_stream, 1, n_stream]
|
|
ggml_tensor * self_kq_mask_swa = nullptr; // F32 [n_kv, n_batch/n_stream, 1, n_stream]
|
|
ggml_tensor * self_kq_mask_swa_cnv = nullptr; // [n_kv, n_batch/n_stream, 1, n_stream]
|
|
|
|
const llama_hparams hparams;
|
|
const llama_cparams cparams;
|
|
|
|
const llama_kv_cache_iswa_context * mctx;
|
|
};
|
|
|
|
class llm_graph_input_attn_cross : public llm_graph_input_i {
|
|
public:
|
|
llm_graph_input_attn_cross(const llama_cross * cross) : cross(cross) {}
|
|
~llm_graph_input_attn_cross() = default;
|
|
|
|
void set_input(const llama_ubatch * ubatch) override;
|
|
|
|
ggml_tensor * get_kq_mask_cross() const { return cross_kq_mask_cnv; }
|
|
|
|
ggml_tensor * cross_kq_mask = nullptr; // F32 [n_outputs_enc, n_batch, 1, 1]
|
|
ggml_tensor * cross_kq_mask_cnv = nullptr; // F32 [n_outputs_enc, n_batch, 1, 1]
|
|
|
|
const llama_cross * cross = nullptr;
|
|
};
|
|
|
|
class llm_graph_input_mem_hybrid : public llm_graph_input_i {
|
|
public:
|
|
llm_graph_input_mem_hybrid(
|
|
std::unique_ptr<llm_graph_input_attn_kv> inp_attn,
|
|
std::unique_ptr<llm_graph_input_rs> inp_rs,
|
|
const llama_memory_hybrid_context * mctx) :
|
|
inp_attn(std::move(inp_attn)),
|
|
inp_rs(std::move(inp_rs)),
|
|
mctx(mctx) { }
|
|
virtual ~llm_graph_input_mem_hybrid() = default;
|
|
|
|
void set_input(const llama_ubatch * ubatch) override;
|
|
|
|
std::unique_ptr<llm_graph_input_attn_kv> inp_attn;
|
|
std::unique_ptr<llm_graph_input_rs> inp_rs;
|
|
|
|
llm_graph_input_attn_kv * get_attn() const { return inp_attn.get(); }
|
|
llm_graph_input_rs * get_recr() const { return inp_rs.get(); }
|
|
|
|
const llama_memory_hybrid_context * mctx;
|
|
};
|
|
|
|
//
|
|
// llm_graph_result
|
|
//
|
|
|
|
// these objects deliver the result from the graph build process back to the llama_context
|
|
// note that the input tensors created for the graph are referenced here - the goal is to be able to populate their
|
|
// specific data, by calling the set_inputs() method
|
|
// along with the input tensors, the object also provides commonly used outputs tensors, such as logits, embeddings, etc.
|
|
// these are used by the llama_context to extact the relevant data, based on the compute parameters
|
|
|
|
// callback that allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
|
|
using llm_graph_cb = std::function<void(const llama_ubatch & ubatch, ggml_tensor * cur, const char * name, int il)>;
|
|
|
|
class llm_graph_result;
|
|
|
|
struct llm_graph_params {
|
|
llm_arch arch = LLM_ARCH_UNKNOWN;
|
|
|
|
llama_hparams hparams;
|
|
llama_cparams cparams;
|
|
|
|
llama_ubatch ubatch; // note: intentionally make a copy
|
|
|
|
llm_graph_type gtype;
|
|
|
|
ggml_backend_sched_t sched;
|
|
ggml_backend_t backend_cpu;
|
|
|
|
const llama_adapter_cvec * cvec;
|
|
const llama_adapter_loras * loras;
|
|
const llama_memory_context_i * mctx;
|
|
const llama_cross * cross;
|
|
|
|
uint32_t n_outputs;
|
|
|
|
llm_graph_cb cb;
|
|
|
|
llm_graph_result * res;
|
|
|
|
// return true if the "other" params would result in a graph with the same topology as with the current params
|
|
// having the same topology allows us to reuse the graph in some cases
|
|
bool allow_reuse(const llm_graph_params & other) const {
|
|
// first check the ubatch
|
|
bool can_reuse_ubatch =
|
|
ubatch.equal_seqs() == other.ubatch.equal_seqs() &&
|
|
ubatch.n_tokens == other.ubatch.n_tokens &&
|
|
ubatch.n_seq_tokens == other.ubatch.n_seq_tokens &&
|
|
ubatch.n_seqs == other.ubatch.n_seqs &&
|
|
ubatch.n_seqs_unq == other.ubatch.n_seqs_unq &&
|
|
(
|
|
(!ubatch.token && !other.ubatch.token) ||
|
|
(!ubatch.embd && !other.ubatch.embd)
|
|
);
|
|
|
|
// when we split the batch using "equal_seqs" we have to verify that the participating sequences are the same
|
|
// the reason is because the set of attention streams would be different for different sequences
|
|
if (can_reuse_ubatch && ubatch.equal_seqs()) {
|
|
if (!ubatch.data) {
|
|
// if the old ubatch does not own it's data, then we cannot guarantee that it is still alive, and
|
|
// therefore we cannot perform the sequence id check. normally should never happen
|
|
can_reuse_ubatch = false;
|
|
} else {
|
|
for (uint32_t s = 0; s < ubatch.n_seqs_unq; ++s) {
|
|
can_reuse_ubatch &= ubatch.seq_id_unq[s] == other.ubatch.seq_id_unq[s];
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!can_reuse_ubatch) {
|
|
return false;
|
|
}
|
|
|
|
return
|
|
cparams.embeddings == other.cparams.embeddings &&
|
|
cparams.causal_attn == other.cparams.causal_attn &&
|
|
arch == other.arch &&
|
|
gtype == other.gtype &&
|
|
cvec == other.cvec &&
|
|
loras == other.loras &&
|
|
cross == other.cross &&
|
|
n_outputs == other.n_outputs;
|
|
}
|
|
};
|
|
|
|
class llm_graph_result {
|
|
public:
|
|
llm_graph_result(int64_t max_nodes);
|
|
|
|
virtual ~llm_graph_result() = default;
|
|
|
|
ggml_tensor * get_tokens() const { return t_tokens; }
|
|
ggml_tensor * get_logits() const { return t_logits; }
|
|
ggml_tensor * get_embd() const { return t_embd; }
|
|
ggml_tensor * get_embd_pooled() const { return t_embd_pooled; }
|
|
|
|
ggml_cgraph * get_gf() const { return gf; }
|
|
ggml_context * get_ctx() const { return ctx_compute.get(); }
|
|
|
|
int64_t get_max_nodes() const;
|
|
|
|
void reset();
|
|
|
|
void set_inputs(const llama_ubatch * ubatch);
|
|
|
|
// try to update the existing graph result using the new graph parameters in order to reuse it
|
|
// this can only be done if we determine that the resulting graph using the new graph parameters
|
|
// would be identical to the existing graph. in that case, we simply have to update the memory
|
|
// contexts of the input tensors of the graph and we can reuse it for another computation
|
|
// return true if the graph was updated and can be reused
|
|
bool can_reuse(const llm_graph_params & params);
|
|
|
|
llm_graph_input_i * add_input(llm_graph_input_ptr input);
|
|
|
|
void set_params(const llm_graph_params & params);
|
|
|
|
// important graph nodes
|
|
ggml_tensor * t_tokens = nullptr;
|
|
ggml_tensor * t_logits = nullptr;
|
|
ggml_tensor * t_embd = nullptr;
|
|
ggml_tensor * t_embd_pooled = nullptr;
|
|
|
|
std::vector<llm_graph_input_ptr> inputs;
|
|
|
|
ggml_context_ptr ctx_compute;
|
|
|
|
// memory buffers used to evaluate the model
|
|
std::vector<uint8_t> buf_compute_meta;
|
|
|
|
ggml_cgraph * gf;
|
|
|
|
int64_t max_nodes;
|
|
|
|
private:
|
|
// keep a copy of the previous graph parameters
|
|
// we will use this to determine whether the graph can be reused by comparing them with the new parameters
|
|
// note: these are updated after constructing the new graph
|
|
llm_graph_params params;
|
|
|
|
// env: LLAMA_GRAPH_RESULT_DEBUG
|
|
int debug = 0;
|
|
};
|
|
|
|
using llm_graph_result_ptr = std::unique_ptr<llm_graph_result>;
|
|
|
|
//
|
|
// llm_graph_context
|
|
//
|
|
|
|
// used in build_rs to properly order writes and avoid unnecessary copies
|
|
using llm_graph_get_rows_fn = std::function<ggml_tensor * (ggml_context *, ggml_tensor * states, ggml_tensor * ids)>;
|
|
|
|
struct llm_graph_context {
|
|
const llm_arch arch;
|
|
|
|
const llama_hparams & hparams;
|
|
const llama_cparams & cparams;
|
|
const llama_ubatch & ubatch;
|
|
|
|
const int64_t n_embd;
|
|
const int64_t n_layer;
|
|
const int64_t n_rot;
|
|
const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
|
|
const int64_t n_head;
|
|
const int64_t n_head_kv;
|
|
const int64_t n_embd_head_k;
|
|
const int64_t n_embd_k_gqa;
|
|
const int64_t n_embd_head_v;
|
|
const int64_t n_embd_v_gqa;
|
|
const int64_t n_expert;
|
|
const int64_t n_expert_used;
|
|
|
|
const float freq_base;
|
|
const float freq_scale;
|
|
const float ext_factor;
|
|
const float attn_factor;
|
|
const float beta_fast;
|
|
const float beta_slow;
|
|
const float norm_eps;
|
|
const float norm_rms_eps;
|
|
|
|
const int64_t n_tokens;
|
|
const int64_t n_outputs;
|
|
const int32_t n_ctx_orig; // yarn
|
|
|
|
const enum llama_pooling_type pooling_type;
|
|
const enum llama_rope_type rope_type;
|
|
|
|
ggml_backend_sched_t sched;
|
|
|
|
ggml_backend_t backend_cpu; // TODO: needed by build_attn_mha, figure out a way to remove?
|
|
|
|
const llama_adapter_cvec * cvec;
|
|
const llama_adapter_loras * loras;
|
|
const llama_memory_context_i * mctx;
|
|
const llama_cross * cross;
|
|
|
|
const llm_graph_cb & cb_func;
|
|
|
|
llm_graph_result * res;
|
|
|
|
ggml_context * ctx0 = nullptr;
|
|
ggml_cgraph * gf = nullptr;
|
|
|
|
llm_graph_context(const llm_graph_params & params);
|
|
virtual ~llm_graph_context() = default;
|
|
|
|
void cb(ggml_tensor * cur, const char * name, int il) const;
|
|
|
|
//
|
|
// common
|
|
//
|
|
|
|
ggml_tensor * build_cvec(
|
|
ggml_tensor * cur,
|
|
int il) const;
|
|
|
|
// do mat_mul, while optionally apply lora
|
|
ggml_tensor * build_lora_mm(
|
|
ggml_tensor * w,
|
|
ggml_tensor * cur) const;
|
|
|
|
// do mat_mul_id, while optionally apply lora
|
|
ggml_tensor * build_lora_mm_id(
|
|
ggml_tensor * w, // ggml_tensor * as
|
|
ggml_tensor * cur, // ggml_tensor * b
|
|
ggml_tensor * ids) const;
|
|
|
|
ggml_tensor * build_norm(
|
|
ggml_tensor * cur,
|
|
ggml_tensor * mw,
|
|
ggml_tensor * mb,
|
|
llm_norm_type type,
|
|
int il) const;
|
|
|
|
ggml_tensor * build_ffn(
|
|
ggml_tensor * cur,
|
|
ggml_tensor * up,
|
|
ggml_tensor * up_b,
|
|
ggml_tensor * up_s,
|
|
ggml_tensor * gate,
|
|
ggml_tensor * gate_b,
|
|
ggml_tensor * gate_s,
|
|
ggml_tensor * down,
|
|
ggml_tensor * down_b,
|
|
ggml_tensor * down_s,
|
|
ggml_tensor * act_scales,
|
|
llm_ffn_op_type type_op,
|
|
llm_ffn_gate_type type_gate,
|
|
int il) const;
|
|
|
|
// build MoE FFN without bias tensors
|
|
ggml_tensor * build_moe_ffn(
|
|
ggml_tensor * cur,
|
|
ggml_tensor * gate_inp,
|
|
ggml_tensor * up_exps,
|
|
ggml_tensor * gate_exps,
|
|
ggml_tensor * down_exps,
|
|
ggml_tensor * exp_probs_b,
|
|
int64_t n_expert,
|
|
int64_t n_expert_used,
|
|
llm_ffn_op_type type_op,
|
|
bool norm_w,
|
|
bool scale_w,
|
|
float w_scale,
|
|
llama_expert_gating_func_type gating_op,
|
|
int il,
|
|
ggml_tensor * probs_in = nullptr) const;
|
|
|
|
ggml_tensor * build_moe_ffn(
|
|
ggml_tensor * cur,
|
|
ggml_tensor * gate_inp,
|
|
ggml_tensor * gate_inp_b,
|
|
ggml_tensor * up_exps,
|
|
ggml_tensor * up_exps_b,
|
|
ggml_tensor * gate_exps,
|
|
ggml_tensor * gate_exps_b,
|
|
ggml_tensor * down_exps,
|
|
ggml_tensor * down_exps_b,
|
|
ggml_tensor * exp_probs_b,
|
|
int64_t n_expert,
|
|
int64_t n_expert_used,
|
|
llm_ffn_op_type type_op,
|
|
bool norm_w,
|
|
bool scale_w,
|
|
float w_scale,
|
|
llama_expert_gating_func_type gating_op,
|
|
int il,
|
|
ggml_tensor * probs_in = nullptr) const;
|
|
|
|
//
|
|
// inputs
|
|
//
|
|
|
|
ggml_tensor * build_inp_embd(ggml_tensor * tok_embd) const;
|
|
ggml_tensor * build_inp_pos() const;
|
|
ggml_tensor * build_inp_attn_scale() const;
|
|
ggml_tensor * build_inp_out_ids() const;
|
|
ggml_tensor * build_inp_mean() const;
|
|
ggml_tensor * build_inp_cls() const;
|
|
|
|
ggml_tensor * build_inp_cross_embd() const;
|
|
ggml_tensor * build_inp_pos_bucket_enc() const;
|
|
ggml_tensor * build_inp_pos_bucket_dec() const;
|
|
ggml_tensor * build_pos_bias(ggml_tensor * pos_bucket, ggml_tensor * attn_rel_b) const;
|
|
|
|
//
|
|
// attention
|
|
//
|
|
|
|
ggml_tensor * build_attn_mha(
|
|
ggml_tensor * q, // [n_embd_head_q, n_head_q, n_tokens]
|
|
ggml_tensor * k, // [n_embd_head_k, n_head_k, n_tokens]
|
|
ggml_tensor * v, // [n_embd_head_v, n_head_v, n_tokens] (v_trans == false)
|
|
ggml_tensor * kq_b,
|
|
ggml_tensor * kq_mask,
|
|
ggml_tensor * sinks, // [n_head_q]
|
|
ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
|
|
float kq_scale,
|
|
int il) const;
|
|
|
|
llm_graph_input_attn_no_cache * build_attn_inp_no_cache() const;
|
|
|
|
ggml_tensor * build_attn(
|
|
llm_graph_input_attn_no_cache * inp,
|
|
ggml_tensor * wo,
|
|
ggml_tensor * wo_b,
|
|
ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
|
|
ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
|
|
ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
|
|
ggml_tensor * kq_b,
|
|
ggml_tensor * sinks, // [n_head_q]
|
|
ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
|
|
float kq_scale,
|
|
int il) const;
|
|
|
|
llm_graph_input_attn_kv * build_attn_inp_kv() const;
|
|
|
|
ggml_tensor * build_attn(
|
|
llm_graph_input_attn_kv * inp,
|
|
ggml_tensor * wo,
|
|
ggml_tensor * wo_b,
|
|
ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
|
|
ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
|
|
ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
|
|
ggml_tensor * kq_b,
|
|
ggml_tensor * sinks, // [n_head_q]
|
|
ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
|
|
float kq_scale,
|
|
int il) const;
|
|
|
|
llm_graph_input_attn_kv_iswa * build_attn_inp_kv_iswa() const;
|
|
|
|
// note: if k_cur or v_cur are not provided, they will not be stored in the memory
|
|
ggml_tensor * build_attn(
|
|
llm_graph_input_attn_kv_iswa * inp,
|
|
ggml_tensor * wo,
|
|
ggml_tensor * wo_b,
|
|
ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
|
|
ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens] optional
|
|
ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens] optional
|
|
ggml_tensor * kq_b,
|
|
ggml_tensor * sinks, // [n_head_q]
|
|
ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
|
|
float kq_scale,
|
|
int il) const;
|
|
|
|
llm_graph_input_attn_cross * build_attn_inp_cross() const;
|
|
|
|
ggml_tensor * build_attn(
|
|
llm_graph_input_attn_cross * inp,
|
|
ggml_tensor * wo,
|
|
ggml_tensor * wo_b,
|
|
ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
|
|
ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
|
|
ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
|
|
ggml_tensor * kq_b,
|
|
ggml_tensor * sinks, // [n_head_q]
|
|
ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
|
|
float kq_scale,
|
|
int il) const;
|
|
|
|
//
|
|
// recurrent
|
|
//
|
|
|
|
// TODO: move this implementation to llama_memory_recurrent.
|
|
// this is analogous to llama_kv_cache::cpy_k / cpy_v
|
|
// when moving, avoid passing `ggml_cgraph` - only pass `ggml_context`. would likely need to split the
|
|
// implementation in 2 separate methods. the goal is to avoid calling `ggml_build_forward_expand` in
|
|
// `llama_memory_recurrent`
|
|
ggml_tensor * build_rs(
|
|
ggml_tensor * s,
|
|
ggml_tensor * state_copy_main,
|
|
ggml_tensor * state_copy_extra,
|
|
int32_t state_size,
|
|
int32_t n_seqs,
|
|
uint32_t n_rs,
|
|
uint32_t rs_head,
|
|
uint32_t rs_size,
|
|
int32_t rs_zero,
|
|
const llm_graph_get_rows_fn & get_state_rows = ggml_get_rows) const;
|
|
|
|
llm_graph_input_rs * build_rs_inp() const;
|
|
|
|
ggml_tensor * build_rs(
|
|
llm_graph_input_rs * inp,
|
|
ggml_tensor * s,
|
|
int32_t state_size,
|
|
int32_t n_seqs,
|
|
const llm_graph_get_rows_fn & get_state_rows = ggml_get_rows) const;
|
|
|
|
ggml_tensor * build_rwkv_token_shift_load(
|
|
llm_graph_input_rs * inp,
|
|
const llama_ubatch & ubatch,
|
|
int il) const;
|
|
|
|
ggml_tensor * build_rwkv_token_shift_store(
|
|
ggml_tensor * token_shift,
|
|
const llama_ubatch & ubatch,
|
|
int il) const;
|
|
//
|
|
// hybrid
|
|
//
|
|
|
|
llm_graph_input_mem_hybrid * build_inp_mem_hybrid() const;
|
|
|
|
//
|
|
// pooling
|
|
//
|
|
|
|
void build_pooling(
|
|
ggml_tensor * cls,
|
|
ggml_tensor * cls_b,
|
|
ggml_tensor * cls_out,
|
|
ggml_tensor * cls_out_b) const;
|
|
|
|
//
|
|
// dense (out)
|
|
//
|
|
|
|
void build_dense_out(
|
|
ggml_tensor * dense_2,
|
|
ggml_tensor * dense_3) const;
|
|
};
|
|
|
|
// TODO: better name
|
|
int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional);
|