mirror of
https://github.com/ollama/ollama.git
synced 2025-11-11 20:57:58 +01:00
* TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch
This will be redone once my branch is merged upstream in llama.cpp
* feat: Update all patches
There are a number that are no longer needed at all:
- 0003-embeddings: Embeddings entirely overhauled on master
- 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely
overhauled on master
- 0019-metal-add-mean-kernel-14267: Merged upstream
- 0020-CUDA-add-mean-operation-14313: Merged upstream
* feat: Sync llama.cpp and ggml
* fix: Update rsync-filter for all moved/new/removed files
* fix: Add files missing from sync
* fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs
* fix: Add ggml files missing from sync
* fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files
* fix: Remove mtmd main cpp files
* fix: Add missing include in sampling_ext.cpp
* fix: Update llama.go to use mtmd instead of clip/llava
* fix: Add patch for mtmd_input_text
* chore: Ignore *.patched in the patch directory
* fix: Fix support for arch-specific ggml-cpu source files with new arrangement
In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific
implementations were split out into a nested tree structure under
ggml-cpu/arch. This conflicts with standard CGO layout where all
arch-specific source files are expected to live in the same directory as
the parent go module and use suffixes based on GOOS and GOARCH. As such,
there were really two options for getting this to work:
1. Add a patch on top of the GGML sync to rearrange the files to match the
GO layout convention
2. Use CGO directives to conditionally include the nested source files in
the compilation units
This commit does (2) in order to minimize the set of changes needed on top
of the upstream file layout. To get this to work, there are two key things
needed:
1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in
the preprocessor directives
2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to
explicitly include the .c|.cpp files for the given architecture from the
nested directory
* fix: Use mtmd_helper to correctly load the bitmap for the image
* fix: Apply patch for mtmd_text_input
* fix: Add missing stb to llama.cpp rsync-filter
* fix: Add sync'ed stb vendored header
* fix: Use c++17 and include vendor for go wrapper modules
* fix: Update patch 0015 for upstream implementation of uuid
* feat: Bump to the latest tip of the branch
* fix: Update patches for bump
* feat: Bump back to the cenral repo and point at the latest master
This includes granite 4 and a number of other model architectures!
* fix: Revert changes to ggml export GPU UUID patch
* fix: Add patch for GGML_VERSION and GGML_COMMIT constants
* feat: Sync all patched code
* build: Include cmake/common.cmake in ggml sync
* build: Add top-level include for GNUINstallDirs in CMakeLists.txt
This is used to populate CMAKE_INSTALL_BINDIR
* fix: Add a patch to avoid power throttling API on non-msvc windows builds
* fix: Sync patch changes for ggml-cpu.c
* feat: Bump llama.cpp to 4a4f42
This picks up support for Kimi K2 and PLaMO-2
* feat: Sync llama.cpp
* fix: Handle multi-chunk image encodings from mtmd
* fix: Re-number patches after merge with `main`
* feat: Bump to 41e78c in the makefile
* fix: Fix Solar and argsort/copy patches after bump
* fix: Remove Gemma3n CUDA Graphs patch
It was implemented upstream:
https://github.com/ggml-org/llama.cpp/pull/14741
* feat: Sync llama.cpp / ggml after latest bump
* build: Remove unnecessary CFLAGS definitions in cpu.go
* fix: Remove unnecessary additions in the rsync-filter
* fix: Remove unused vendored code for chat template parsing
* Revert "fix: Remove Gemma3n CUDA Graphs patch"
This reverts commit d724caced3.
* fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes
https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394
* fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n
* unwind mxfp4 patch
Prepare to bump ggml with their impl for mxfp4
* bump
* fix windows build error
* Convert tensors at load time
Repack the mxfp4 tensors as ggmls kernels expect them to be.
* convert mlp bf16 to f32
* buffer the conversion better
* reshape earlier
* openai swiglu
* add ids
* split qkv, gate_up
* fix nested alt tags
* fast attention
* remove debug messages
* fix lint
* remove redundant test
* remap values only if source/target are different
* add back i32->i32 copy
* refactor cpu quants
* clean up vendor
* update patch instructions
* clean up patches
* remove webgpu
* update mem
* also handle gpt-oss
* revert convert changes
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
1568 lines
51 KiB
C++
Vendored
1568 lines
51 KiB
C++
Vendored
#if defined(_MSC_VER)
|
|
#define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
|
|
#endif
|
|
|
|
#include "ggml.h"
|
|
#include "gguf.h"
|
|
|
|
#include "common.h"
|
|
#include "log.h"
|
|
#include "llama.h"
|
|
|
|
#include <algorithm>
|
|
#include <cinttypes>
|
|
#include <climits>
|
|
#include <cmath>
|
|
#include <codecvt>
|
|
#include <cstdarg>
|
|
#include <cstring>
|
|
#include <ctime>
|
|
#include <filesystem>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <iterator>
|
|
#include <regex>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <thread>
|
|
#include <unordered_map>
|
|
#include <unordered_set>
|
|
#include <vector>
|
|
|
|
#if defined(__APPLE__) && defined(__MACH__)
|
|
#include <sys/types.h>
|
|
#include <sys/sysctl.h>
|
|
#endif
|
|
|
|
#if defined(_WIN32)
|
|
#define WIN32_LEAN_AND_MEAN
|
|
#ifndef NOMINMAX
|
|
# define NOMINMAX
|
|
#endif
|
|
#include <locale>
|
|
#include <windows.h>
|
|
#include <fcntl.h>
|
|
#include <io.h>
|
|
#else
|
|
#include <sys/ioctl.h>
|
|
#include <sys/stat.h>
|
|
#include <unistd.h>
|
|
#endif
|
|
|
|
#if defined(_MSC_VER)
|
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
|
#endif
|
|
|
|
//
|
|
// CPU utils
|
|
//
|
|
|
|
int32_t cpu_get_num_physical_cores() {
|
|
#ifdef __linux__
|
|
// enumerate the set of thread siblings, num entries is num cores
|
|
std::unordered_set<std::string> siblings;
|
|
for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) {
|
|
std::ifstream thread_siblings("/sys/devices/system/cpu/cpu"
|
|
+ std::to_string(cpu) + "/topology/thread_siblings");
|
|
if (!thread_siblings.is_open()) {
|
|
break; // no more cpus
|
|
}
|
|
std::string line;
|
|
if (std::getline(thread_siblings, line)) {
|
|
siblings.insert(line);
|
|
}
|
|
}
|
|
if (!siblings.empty()) {
|
|
return static_cast<int32_t>(siblings.size());
|
|
}
|
|
#elif defined(__APPLE__) && defined(__MACH__)
|
|
int32_t num_physical_cores;
|
|
size_t len = sizeof(num_physical_cores);
|
|
int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0);
|
|
if (result == 0) {
|
|
return num_physical_cores;
|
|
}
|
|
result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0);
|
|
if (result == 0) {
|
|
return num_physical_cores;
|
|
}
|
|
#elif defined(_WIN32) && (_WIN32_WINNT >= 0x0601) && !defined(__MINGW64__) // windows 7 and later
|
|
// TODO: windows + arm64 + mingw64
|
|
unsigned int n_threads_win = std::thread::hardware_concurrency();
|
|
unsigned int default_threads = n_threads_win > 0 ? (n_threads_win <= 4 ? n_threads_win : n_threads_win / 2) : 4;
|
|
|
|
DWORD buffer_size = 0;
|
|
if (!GetLogicalProcessorInformationEx(RelationProcessorCore, nullptr, &buffer_size)) {
|
|
if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) {
|
|
return default_threads;
|
|
}
|
|
}
|
|
|
|
std::vector<char> buffer(buffer_size);
|
|
if (!GetLogicalProcessorInformationEx(RelationProcessorCore, reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(buffer.data()), &buffer_size)) {
|
|
return default_threads;
|
|
}
|
|
|
|
int32_t num_physical_cores = 0;
|
|
PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info = reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(buffer.data());
|
|
while (buffer_size > 0) {
|
|
if (info->Relationship == RelationProcessorCore) {
|
|
num_physical_cores += info->Processor.GroupCount;
|
|
}
|
|
buffer_size -= info->Size;
|
|
info = reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(reinterpret_cast<char*>(info) + info->Size);
|
|
}
|
|
|
|
return num_physical_cores > 0 ? num_physical_cores : default_threads;
|
|
#endif
|
|
unsigned int n_threads = std::thread::hardware_concurrency();
|
|
return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
|
|
}
|
|
|
|
#if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
|
|
#include <pthread.h>
|
|
|
|
static void cpuid(unsigned leaf, unsigned subleaf,
|
|
unsigned *eax, unsigned *ebx, unsigned *ecx, unsigned *edx) {
|
|
__asm__("movq\t%%rbx,%%rsi\n\t"
|
|
"cpuid\n\t"
|
|
"xchgq\t%%rbx,%%rsi"
|
|
: "=a"(*eax), "=S"(*ebx), "=c"(*ecx), "=d"(*edx)
|
|
: "0"(leaf), "2"(subleaf));
|
|
}
|
|
|
|
static int pin_cpu(int cpu) {
|
|
cpu_set_t mask;
|
|
CPU_ZERO(&mask);
|
|
CPU_SET(cpu, &mask);
|
|
return pthread_setaffinity_np(pthread_self(), sizeof(mask), &mask);
|
|
}
|
|
|
|
static bool is_hybrid_cpu(void) {
|
|
unsigned eax, ebx, ecx, edx;
|
|
cpuid(7, 0, &eax, &ebx, &ecx, &edx);
|
|
return !!(edx & (1u << 15));
|
|
}
|
|
|
|
static bool is_running_on_efficiency_core(void) {
|
|
unsigned eax, ebx, ecx, edx;
|
|
cpuid(0x1a, 0, &eax, &ebx, &ecx, &edx);
|
|
int intel_atom = 0x20;
|
|
int core_type = (eax & 0xff000000u) >> 24;
|
|
return core_type == intel_atom;
|
|
}
|
|
|
|
static int cpu_count_math_cpus(int n_cpu) {
|
|
int result = 0;
|
|
for (int cpu = 0; cpu < n_cpu; ++cpu) {
|
|
if (pin_cpu(cpu)) {
|
|
return -1;
|
|
}
|
|
if (is_running_on_efficiency_core()) {
|
|
continue; // efficiency cores harm lockstep threading
|
|
}
|
|
++cpu; // hyperthreading isn't useful for linear algebra
|
|
++result;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
#endif // __x86_64__ && __linux__
|
|
|
|
/**
|
|
* Returns number of CPUs on system that are useful for math.
|
|
*/
|
|
int32_t cpu_get_num_math() {
|
|
#if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
|
|
int n_cpu = sysconf(_SC_NPROCESSORS_ONLN);
|
|
if (n_cpu < 1) {
|
|
return cpu_get_num_physical_cores();
|
|
}
|
|
if (is_hybrid_cpu()) {
|
|
cpu_set_t affinity;
|
|
if (!pthread_getaffinity_np(pthread_self(), sizeof(affinity), &affinity)) {
|
|
int result = cpu_count_math_cpus(n_cpu);
|
|
pthread_setaffinity_np(pthread_self(), sizeof(affinity), &affinity);
|
|
if (result > 0) {
|
|
return result;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
return cpu_get_num_physical_cores();
|
|
}
|
|
|
|
// Helper for setting process priority
|
|
|
|
#if defined(_WIN32)
|
|
|
|
bool set_process_priority(enum ggml_sched_priority prio) {
|
|
if (prio == GGML_SCHED_PRIO_NORMAL) {
|
|
return true;
|
|
}
|
|
|
|
DWORD p = NORMAL_PRIORITY_CLASS;
|
|
switch (prio) {
|
|
case GGML_SCHED_PRIO_LOW: p = BELOW_NORMAL_PRIORITY_CLASS; break;
|
|
case GGML_SCHED_PRIO_NORMAL: p = NORMAL_PRIORITY_CLASS; break;
|
|
case GGML_SCHED_PRIO_MEDIUM: p = ABOVE_NORMAL_PRIORITY_CLASS; break;
|
|
case GGML_SCHED_PRIO_HIGH: p = HIGH_PRIORITY_CLASS; break;
|
|
case GGML_SCHED_PRIO_REALTIME: p = REALTIME_PRIORITY_CLASS; break;
|
|
}
|
|
|
|
if (!SetPriorityClass(GetCurrentProcess(), p)) {
|
|
LOG_WRN("failed to set process priority class %d : (%d)\n", prio, (int) GetLastError());
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
#else // MacOS and POSIX
|
|
#include <sys/types.h>
|
|
#include <sys/resource.h>
|
|
|
|
bool set_process_priority(enum ggml_sched_priority prio) {
|
|
if (prio == GGML_SCHED_PRIO_NORMAL) {
|
|
return true;
|
|
}
|
|
|
|
int p = 0;
|
|
switch (prio) {
|
|
case GGML_SCHED_PRIO_LOW: p = 5; break;
|
|
case GGML_SCHED_PRIO_NORMAL: p = 0; break;
|
|
case GGML_SCHED_PRIO_MEDIUM: p = -5; break;
|
|
case GGML_SCHED_PRIO_HIGH: p = -10; break;
|
|
case GGML_SCHED_PRIO_REALTIME: p = -20; break;
|
|
}
|
|
|
|
if (!setpriority(PRIO_PROCESS, 0, p)) {
|
|
LOG_WRN("failed to set process priority %d : %s (%d)\n", prio, strerror(errno), errno);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#endif
|
|
|
|
//
|
|
// CLI argument parsing
|
|
//
|
|
|
|
|
|
void postprocess_cpu_params(cpu_params& cpuparams, const cpu_params* role_model) {
|
|
int32_t n_set = 0;
|
|
|
|
if (cpuparams.n_threads < 0) {
|
|
// Assuming everything about cpuparams is invalid
|
|
if (role_model != nullptr) {
|
|
cpuparams = *role_model;
|
|
} else {
|
|
cpuparams.n_threads = cpu_get_num_math();
|
|
}
|
|
}
|
|
|
|
for (int32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
|
|
if (cpuparams.cpumask[i]) {
|
|
n_set++;
|
|
}
|
|
}
|
|
|
|
if (n_set && n_set < cpuparams.n_threads) {
|
|
// Not enough set bits, may experience performance issues.
|
|
LOG_WRN("Not enough set bits in CPU mask (%d) to satisfy requested thread count: %d\n", n_set, cpuparams.n_threads);
|
|
}
|
|
}
|
|
|
|
bool parse_cpu_range(const std::string & range, bool (&boolmask)[GGML_MAX_N_THREADS]) {
|
|
size_t dash_loc = range.find('-');
|
|
if (dash_loc == std::string::npos) {
|
|
LOG_ERR("Format of CPU range is invalid! Expected [<start>]-[<end>].\n");
|
|
return false;
|
|
}
|
|
|
|
size_t start_i;
|
|
size_t end_i;
|
|
|
|
if (dash_loc == 0) {
|
|
start_i = 0;
|
|
} else {
|
|
start_i = std::stoull(range.substr(0, dash_loc));
|
|
if (start_i >= GGML_MAX_N_THREADS) {
|
|
LOG_ERR("Start index out of bounds!\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (dash_loc == range.length() - 1) {
|
|
end_i = GGML_MAX_N_THREADS - 1;
|
|
} else {
|
|
end_i = std::stoull(range.substr(dash_loc + 1));
|
|
if (end_i >= GGML_MAX_N_THREADS) {
|
|
LOG_ERR("End index out of bounds!\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
for (size_t i = start_i; i <= end_i; i++) {
|
|
boolmask[i] = true;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool parse_cpu_mask(const std::string & mask, bool (&boolmask)[GGML_MAX_N_THREADS]) {
|
|
// Discard potential 0x prefix
|
|
size_t start_i = 0;
|
|
if (mask.length() >= 2 && mask.substr(0, 2) == "0x") {
|
|
start_i = 2;
|
|
}
|
|
|
|
size_t num_digits = mask.length() - start_i;
|
|
if (num_digits > 128) num_digits = 128;
|
|
|
|
size_t end_i = num_digits + start_i;
|
|
|
|
for (size_t i = start_i, n = (num_digits*4 - 1); i < end_i; i++, n-=4) {
|
|
char c = mask.at(i);
|
|
int8_t id = c;
|
|
|
|
if ((c >= '0' && c <= '9')) {
|
|
id -= '0';
|
|
} else if (c >= 'a' && c <= 'f') {
|
|
id -= 'a' - 10;
|
|
} else if (c >= 'A' && c <= 'F') {
|
|
id -= 'A' - 10;
|
|
} else {
|
|
LOG_ERR("Invalid hex character '%c' at position %d\n", c, int32_t(i));
|
|
return false;
|
|
}
|
|
|
|
boolmask[ n ] = boolmask[ n ] || ((id & 8) != 0);
|
|
boolmask[n - 1] = boolmask[n - 1] || ((id & 4) != 0);
|
|
boolmask[n - 2] = boolmask[n - 2] || ((id & 2) != 0);
|
|
boolmask[n - 3] = boolmask[n - 3] || ((id & 1) != 0);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void common_init() {
|
|
llama_log_set([](ggml_log_level level, const char * text, void * /*user_data*/) {
|
|
if (LOG_DEFAULT_LLAMA <= common_log_verbosity_thold) {
|
|
common_log_add(common_log_main(), level, "%s", text);
|
|
}
|
|
}, NULL);
|
|
|
|
#ifdef NDEBUG
|
|
const char * build_type = "";
|
|
#else
|
|
const char * build_type = " (debug)";
|
|
#endif
|
|
|
|
LOG_INF("build: %d (%s) with %s for %s%s\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT, LLAMA_COMPILER, LLAMA_BUILD_TARGET, build_type);
|
|
}
|
|
|
|
std::string common_params_get_system_info(const common_params & params) {
|
|
std::ostringstream os;
|
|
|
|
os << "system_info: n_threads = " << params.cpuparams.n_threads;
|
|
if (params.cpuparams_batch.n_threads != -1) {
|
|
os << " (n_threads_batch = " << params.cpuparams_batch.n_threads << ")";
|
|
}
|
|
#if defined(_WIN32) && (_WIN32_WINNT >= 0x0601) && !defined(__MINGW64__) // windows 7 and later
|
|
// TODO: windows + arm64 + mingw64
|
|
DWORD logicalProcessorCount = GetActiveProcessorCount(ALL_PROCESSOR_GROUPS);
|
|
os << " / " << logicalProcessorCount << " | " << llama_print_system_info();
|
|
#else
|
|
os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info();
|
|
#endif
|
|
|
|
return os.str();
|
|
}
|
|
|
|
//
|
|
// String utils
|
|
//
|
|
|
|
std::string string_format(const char * fmt, ...) {
|
|
va_list ap;
|
|
va_list ap2;
|
|
va_start(ap, fmt);
|
|
va_copy(ap2, ap);
|
|
int size = vsnprintf(NULL, 0, fmt, ap);
|
|
GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
|
|
std::vector<char> buf(size + 1);
|
|
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
|
|
GGML_ASSERT(size2 == size);
|
|
va_end(ap2);
|
|
va_end(ap);
|
|
return std::string(buf.data(), size);
|
|
}
|
|
|
|
std::string string_strip(const std::string & str) {
|
|
size_t start = 0;
|
|
size_t end = str.size();
|
|
while (start < end && std::isspace(str[start])) {
|
|
start++;
|
|
}
|
|
while (end > start && std::isspace(str[end - 1])) {
|
|
end--;
|
|
}
|
|
return str.substr(start, end - start);
|
|
}
|
|
|
|
std::string string_get_sortable_timestamp() {
|
|
using clock = std::chrono::system_clock;
|
|
|
|
const clock::time_point current_time = clock::now();
|
|
const time_t as_time_t = clock::to_time_t(current_time);
|
|
char timestamp_no_ns[100];
|
|
std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t));
|
|
|
|
const int64_t ns = std::chrono::duration_cast<std::chrono::nanoseconds>(
|
|
current_time.time_since_epoch() % 1000000000).count();
|
|
char timestamp_ns[11];
|
|
snprintf(timestamp_ns, 11, "%09" PRId64, ns);
|
|
|
|
return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns);
|
|
}
|
|
|
|
void string_replace_all(std::string & s, const std::string & search, const std::string & replace) {
|
|
if (search.empty()) {
|
|
return;
|
|
}
|
|
std::string builder;
|
|
builder.reserve(s.length());
|
|
size_t pos = 0;
|
|
size_t last_pos = 0;
|
|
while ((pos = s.find(search, last_pos)) != std::string::npos) {
|
|
builder.append(s, last_pos, pos - last_pos);
|
|
builder.append(replace);
|
|
last_pos = pos + search.length();
|
|
}
|
|
builder.append(s, last_pos, std::string::npos);
|
|
s = std::move(builder);
|
|
}
|
|
|
|
bool string_ends_with(const std::string_view & str, const std::string_view & suffix) {
|
|
return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
|
|
}
|
|
|
|
bool string_remove_suffix(std::string & str, const std::string_view & suffix) {
|
|
bool has_suffix = string_ends_with(str, suffix);
|
|
if (has_suffix) {
|
|
str = str.substr(0, str.size() - suffix.size());
|
|
}
|
|
return has_suffix;
|
|
}
|
|
|
|
size_t string_find_partial_stop(const std::string_view & str, const std::string_view & stop) {
|
|
if (!str.empty() && !stop.empty()) {
|
|
const char text_last_char = str.back();
|
|
for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) {
|
|
if (stop[char_index] == text_last_char) {
|
|
const auto current_partial = stop.substr(0, char_index + 1);
|
|
if (string_ends_with(str, current_partial)) {
|
|
return str.size() - char_index - 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return std::string::npos;
|
|
}
|
|
|
|
std::string regex_escape(const std::string & s) {
|
|
static const std::regex special_chars("[.^$|()*+?\\[\\]{}\\\\]");
|
|
return std::regex_replace(s, special_chars, "\\$&");
|
|
}
|
|
|
|
std::string string_join(const std::vector<std::string> & values, const std::string & separator) {
|
|
std::ostringstream result;
|
|
for (size_t i = 0; i < values.size(); ++i) {
|
|
if (i > 0) {
|
|
result << separator;
|
|
}
|
|
result << values[i];
|
|
}
|
|
return result.str();
|
|
}
|
|
|
|
std::vector<std::string> string_split(const std::string & str, const std::string & delimiter) {
|
|
std::vector<std::string> parts;
|
|
size_t start = 0;
|
|
size_t end = str.find(delimiter);
|
|
|
|
while (end != std::string::npos) {
|
|
parts.push_back(str.substr(start, end - start));
|
|
start = end + delimiter.length();
|
|
end = str.find(delimiter, start);
|
|
}
|
|
|
|
parts.push_back(str.substr(start));
|
|
|
|
return parts;
|
|
}
|
|
|
|
std::string string_repeat(const std::string & str, size_t n) {
|
|
if (n == 0) {
|
|
return "";
|
|
}
|
|
|
|
std::string result;
|
|
result.reserve(str.length() * n);
|
|
|
|
for (size_t i = 0; i < n; ++i) {
|
|
result += str;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
std::string string_from(bool value) {
|
|
return value ? "true" : "false";
|
|
}
|
|
|
|
std::string string_from(const std::vector<int> & values) {
|
|
std::stringstream buf;
|
|
|
|
buf << "[ ";
|
|
bool first = true;
|
|
for (auto e : values) {
|
|
if (first) {
|
|
first = false;
|
|
} else {
|
|
buf << ", ";
|
|
}
|
|
buf << std::to_string(e);
|
|
}
|
|
buf << " ]";
|
|
|
|
return buf.str();
|
|
}
|
|
|
|
std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens) {
|
|
std::stringstream buf;
|
|
|
|
buf << "[ ";
|
|
|
|
bool first = true;
|
|
for (const auto & token : tokens) {
|
|
if (!first) {
|
|
buf << ", ";
|
|
} else {
|
|
first = false;
|
|
}
|
|
|
|
auto detokenized = common_token_to_piece(ctx, token);
|
|
|
|
detokenized.erase(
|
|
std::remove_if(
|
|
detokenized.begin(),
|
|
detokenized.end(),
|
|
[](const unsigned char c) { return !std::isprint(c); }),
|
|
detokenized.end());
|
|
|
|
buf << "'" << detokenized << "'"
|
|
<< ":" << std::to_string(token);
|
|
}
|
|
|
|
buf << " ]";
|
|
|
|
return buf.str();
|
|
}
|
|
|
|
std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch) {
|
|
std::stringstream buf;
|
|
|
|
buf << "[ ";
|
|
|
|
bool first = true;
|
|
for (int i = 0; i < batch.n_tokens; ++i) {
|
|
if (!first) {
|
|
buf << ", ";
|
|
} else {
|
|
first = false;
|
|
}
|
|
|
|
auto detokenized = common_token_to_piece(ctx, batch.token[i]);
|
|
|
|
detokenized.erase(
|
|
std::remove_if(
|
|
detokenized.begin(),
|
|
detokenized.end(),
|
|
[](const unsigned char c) { return !std::isprint(c); }),
|
|
detokenized.end());
|
|
|
|
buf << "\n" << std::to_string(i)
|
|
<< ", token '" << detokenized << "'"
|
|
<< ", pos " << std::to_string(batch.pos[i])
|
|
<< ", n_seq_id " << std::to_string(batch.n_seq_id[i])
|
|
<< ", seq_id " << std::to_string(batch.seq_id[i][0])
|
|
<< ", logits " << std::to_string(batch.logits[i]);
|
|
}
|
|
|
|
buf << " ]";
|
|
|
|
return buf.str();
|
|
}
|
|
|
|
void string_process_escapes(std::string & input) {
|
|
std::size_t input_len = input.length();
|
|
std::size_t output_idx = 0;
|
|
|
|
for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) {
|
|
if (input[input_idx] == '\\' && input_idx + 1 < input_len) {
|
|
switch (input[++input_idx]) {
|
|
case 'n': input[output_idx++] = '\n'; break;
|
|
case 'r': input[output_idx++] = '\r'; break;
|
|
case 't': input[output_idx++] = '\t'; break;
|
|
case '\'': input[output_idx++] = '\''; break;
|
|
case '\"': input[output_idx++] = '\"'; break;
|
|
case '\\': input[output_idx++] = '\\'; break;
|
|
case 'x':
|
|
// Handle \x12, etc
|
|
if (input_idx + 2 < input_len) {
|
|
const char x[3] = { input[input_idx + 1], input[input_idx + 2], 0 };
|
|
char *err_p = nullptr;
|
|
const long val = std::strtol(x, &err_p, 16);
|
|
if (err_p == x + 2) {
|
|
input_idx += 2;
|
|
input[output_idx++] = char(val);
|
|
break;
|
|
}
|
|
}
|
|
// fall through
|
|
default: input[output_idx++] = '\\';
|
|
input[output_idx++] = input[input_idx]; break;
|
|
}
|
|
} else {
|
|
input[output_idx++] = input[input_idx];
|
|
}
|
|
}
|
|
|
|
input.resize(output_idx);
|
|
}
|
|
|
|
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) {
|
|
const char * sep = strchr(data, '=');
|
|
if (sep == nullptr || sep - data >= 128) {
|
|
LOG_ERR("%s: malformed KV override '%s'\n", __func__, data);
|
|
return false;
|
|
}
|
|
llama_model_kv_override kvo;
|
|
std::strncpy(kvo.key, data, sep - data);
|
|
kvo.key[sep - data] = 0;
|
|
sep++;
|
|
if (strncmp(sep, "int:", 4) == 0) {
|
|
sep += 4;
|
|
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
|
|
kvo.val_i64 = std::atol(sep);
|
|
} else if (strncmp(sep, "float:", 6) == 0) {
|
|
sep += 6;
|
|
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
|
|
kvo.val_f64 = std::atof(sep);
|
|
} else if (strncmp(sep, "bool:", 5) == 0) {
|
|
sep += 5;
|
|
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
|
|
if (std::strcmp(sep, "true") == 0) {
|
|
kvo.val_bool = true;
|
|
} else if (std::strcmp(sep, "false") == 0) {
|
|
kvo.val_bool = false;
|
|
} else {
|
|
LOG_ERR("%s: invalid boolean value for KV override '%s'\n", __func__, data);
|
|
return false;
|
|
}
|
|
} else if (strncmp(sep, "str:", 4) == 0) {
|
|
sep += 4;
|
|
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
|
|
if (strlen(sep) > 127) {
|
|
LOG_ERR("%s: malformed KV override '%s', value cannot exceed 127 chars\n", __func__, data);
|
|
return false;
|
|
}
|
|
strncpy(kvo.val_str, sep, 127);
|
|
kvo.val_str[127] = '\0';
|
|
} else {
|
|
LOG_ERR("%s: invalid type for KV override '%s'\n", __func__, data);
|
|
return false;
|
|
}
|
|
overrides.emplace_back(std::move(kvo));
|
|
return true;
|
|
}
|
|
|
|
//
|
|
// Filesystem utils
|
|
//
|
|
|
|
// Validate if a filename is safe to use
|
|
// To validate a full path, split the path by the OS-specific path separator, and validate each part with this function
|
|
bool fs_validate_filename(const std::string & filename) {
|
|
if (!filename.length()) {
|
|
// Empty filename invalid
|
|
return false;
|
|
}
|
|
if (filename.length() > 255) {
|
|
// Limit at common largest possible filename on Linux filesystems
|
|
// to avoid unnecessary further validation
|
|
// (On systems with smaller limits it will be caught by the OS)
|
|
return false;
|
|
}
|
|
|
|
std::u32string filename_utf32;
|
|
try {
|
|
#if defined(__clang__)
|
|
// disable C++17 deprecation warning for std::codecvt_utf8
|
|
# pragma clang diagnostic push
|
|
# pragma clang diagnostic ignored "-Wdeprecated-declarations"
|
|
#elif defined(__GNUC__)
|
|
# pragma GCC diagnostic push
|
|
# pragma GCC diagnostic ignored "-Wdeprecated-declarations"
|
|
#endif
|
|
|
|
std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> converter;
|
|
|
|
#if defined(__clang__)
|
|
# pragma clang diagnostic pop
|
|
#elif defined(__GNUC__)
|
|
# pragma GCC diagnostic pop
|
|
#endif
|
|
|
|
filename_utf32 = converter.from_bytes(filename);
|
|
|
|
// If the reverse conversion mismatches, it means overlong UTF-8 sequences were used,
|
|
// or invalid encodings were encountered. Reject such attempts
|
|
std::string filename_reencoded = converter.to_bytes(filename_utf32);
|
|
if (filename_reencoded != filename) {
|
|
return false;
|
|
}
|
|
} catch (const std::exception &) {
|
|
return false;
|
|
}
|
|
|
|
// Check for forbidden codepoints:
|
|
// - Control characters
|
|
// - Unicode equivalents of illegal characters
|
|
// - UTF-16 surrogate pairs
|
|
// - UTF-8 replacement character
|
|
// - Byte order mark (BOM)
|
|
// - Illegal characters: / \ : * ? " < > |
|
|
for (char32_t c : filename_utf32) {
|
|
if (c <= 0x1F // Control characters (C0)
|
|
|| c == 0x7F // Control characters (DEL)
|
|
|| (c >= 0x80 && c <= 0x9F) // Control characters (C1)
|
|
|| c == 0xFF0E // Fullwidth Full Stop (period equivalent)
|
|
|| c == 0x2215 // Division Slash (forward slash equivalent)
|
|
|| c == 0x2216 // Set Minus (backslash equivalent)
|
|
|| (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs
|
|
|| c == 0xFFFD // Replacement Character (UTF-8)
|
|
|| c == 0xFEFF // Byte Order Mark (BOM)
|
|
|| c == '/' || c == '\\' || c == ':' || c == '*' // Illegal characters
|
|
|| c == '?' || c == '"' || c == '<' || c == '>' || c == '|') {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename
|
|
// Unicode and other whitespace is not affected, only 0x20 space
|
|
if (filename.front() == ' ' || filename.back() == ' ' || filename.back() == '.') {
|
|
return false;
|
|
}
|
|
|
|
// Reject any ".." (currently stricter than necessary, it should be fine to just check for == ".." instead)
|
|
if (filename.find("..") != std::string::npos) {
|
|
return false;
|
|
}
|
|
|
|
// Reject "."
|
|
if (filename == ".") {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
#include <iostream>
|
|
|
|
|
|
// returns true if successful, false otherwise
|
|
bool fs_create_directory_with_parents(const std::string & path) {
|
|
#ifdef _WIN32
|
|
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
|
|
std::wstring wpath = converter.from_bytes(path);
|
|
|
|
// if the path already exists, check whether it's a directory
|
|
const DWORD attributes = GetFileAttributesW(wpath.c_str());
|
|
if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) {
|
|
return true;
|
|
}
|
|
|
|
size_t pos_slash = 0;
|
|
|
|
// process path from front to back, procedurally creating directories
|
|
while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
|
|
const std::wstring subpath = wpath.substr(0, pos_slash);
|
|
|
|
pos_slash += 1;
|
|
|
|
// skip the drive letter, in some systems it can return an access denied error
|
|
if (subpath.length() == 2 && subpath[1] == ':') {
|
|
continue;
|
|
}
|
|
|
|
const bool success = CreateDirectoryW(subpath.c_str(), NULL);
|
|
|
|
if (!success) {
|
|
const DWORD error = GetLastError();
|
|
|
|
// if the path already exists, ensure that it's a directory
|
|
if (error == ERROR_ALREADY_EXISTS) {
|
|
const DWORD attributes = GetFileAttributesW(subpath.c_str());
|
|
if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) {
|
|
return false;
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
#else
|
|
// if the path already exists, check whether it's a directory
|
|
struct stat info;
|
|
if (stat(path.c_str(), &info) == 0) {
|
|
return S_ISDIR(info.st_mode);
|
|
}
|
|
|
|
size_t pos_slash = 1; // skip leading slashes for directory creation
|
|
|
|
// process path from front to back, procedurally creating directories
|
|
while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) {
|
|
const std::string subpath = path.substr(0, pos_slash);
|
|
struct stat info;
|
|
|
|
// if the path already exists, ensure that it's a directory
|
|
if (stat(subpath.c_str(), &info) == 0) {
|
|
if (!S_ISDIR(info.st_mode)) {
|
|
return false;
|
|
}
|
|
} else {
|
|
// create parent directories
|
|
const int ret = mkdir(subpath.c_str(), 0755);
|
|
if (ret != 0) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
pos_slash += 1;
|
|
}
|
|
|
|
return true;
|
|
#endif // _WIN32
|
|
}
|
|
|
|
std::string fs_get_cache_directory() {
|
|
std::string cache_directory = "";
|
|
auto ensure_trailing_slash = [](std::string p) {
|
|
// Make sure to add trailing slash
|
|
if (p.back() != DIRECTORY_SEPARATOR) {
|
|
p += DIRECTORY_SEPARATOR;
|
|
}
|
|
return p;
|
|
};
|
|
if (getenv("LLAMA_CACHE")) {
|
|
cache_directory = std::getenv("LLAMA_CACHE");
|
|
} else {
|
|
#if defined(__linux__) || defined(__FreeBSD__) || defined(_AIX) || defined(__OpenBSD__)
|
|
if (std::getenv("XDG_CACHE_HOME")) {
|
|
cache_directory = std::getenv("XDG_CACHE_HOME");
|
|
} else {
|
|
cache_directory = std::getenv("HOME") + std::string("/.cache/");
|
|
}
|
|
#elif defined(__APPLE__)
|
|
cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
|
|
#elif defined(_WIN32)
|
|
cache_directory = std::getenv("LOCALAPPDATA");
|
|
#else
|
|
# error Unknown architecture
|
|
#endif
|
|
cache_directory = ensure_trailing_slash(cache_directory);
|
|
cache_directory += "llama.cpp";
|
|
}
|
|
return ensure_trailing_slash(cache_directory);
|
|
}
|
|
|
|
std::string fs_get_cache_file(const std::string & filename) {
|
|
GGML_ASSERT(filename.find(DIRECTORY_SEPARATOR) == std::string::npos);
|
|
std::string cache_directory = fs_get_cache_directory();
|
|
const bool success = fs_create_directory_with_parents(cache_directory);
|
|
if (!success) {
|
|
throw std::runtime_error("failed to create cache directory: " + cache_directory);
|
|
}
|
|
return cache_directory + filename;
|
|
}
|
|
|
|
|
|
//
|
|
// Model utils
|
|
//
|
|
|
|
struct common_init_result common_init_from_params(common_params & params) {
|
|
common_init_result iparams;
|
|
auto mparams = common_model_params_to_llama(params);
|
|
|
|
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
|
|
if (model == NULL) {
|
|
LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.path.c_str());
|
|
return iparams;
|
|
}
|
|
|
|
const llama_vocab * vocab = llama_model_get_vocab(model);
|
|
|
|
auto cparams = common_context_params_to_llama(params);
|
|
|
|
llama_context * lctx = llama_init_from_model(model, cparams);
|
|
if (lctx == NULL) {
|
|
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.path.c_str());
|
|
llama_model_free(model);
|
|
return iparams;
|
|
}
|
|
|
|
if (params.ctx_shift && !llama_memory_can_shift(llama_get_memory(lctx))) {
|
|
LOG_WRN("%s: KV cache shifting is not supported for this context, disabling KV cache shifting\n", __func__);
|
|
params.ctx_shift = false;
|
|
}
|
|
|
|
if (!params.control_vectors.empty()) {
|
|
if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1;
|
|
if (params.control_vector_layer_end <= 0) params.control_vector_layer_end = llama_model_n_layer(model);
|
|
|
|
const auto cvec = common_control_vector_load(params.control_vectors);
|
|
if (cvec.n_embd == -1) {
|
|
llama_free(lctx);
|
|
llama_model_free(model);
|
|
|
|
return iparams;
|
|
}
|
|
|
|
int err = llama_apply_adapter_cvec(
|
|
lctx,
|
|
cvec.data.data(),
|
|
cvec.data.size(),
|
|
cvec.n_embd,
|
|
params.control_vector_layer_start,
|
|
params.control_vector_layer_end);
|
|
if (err) {
|
|
llama_free(lctx);
|
|
llama_model_free(model);
|
|
|
|
return iparams;
|
|
}
|
|
}
|
|
|
|
if (llama_pooling_type(lctx) == LLAMA_POOLING_TYPE_RANK) {
|
|
bool ok = true;
|
|
|
|
if (llama_vocab_bos(vocab) == LLAMA_TOKEN_NULL) {
|
|
LOG_WRN("%s: warning: vocab does not have a BOS token, reranking will not work\n", __func__);
|
|
ok = false;
|
|
}
|
|
|
|
bool has_eos = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
|
|
bool has_sep = llama_vocab_sep(vocab) != LLAMA_TOKEN_NULL;
|
|
|
|
if (!has_eos && !has_sep) {
|
|
LOG_WRN("%s: warning: vocab does not have an EOS token or SEP token, reranking will not work\n", __func__);
|
|
ok = false;
|
|
} else if (!has_eos) {
|
|
LOG_WRN("%s: warning: vocab does not have an EOS token, using SEP token as fallback\n", __func__);
|
|
} else if (!has_sep) {
|
|
LOG_WRN("%s: warning: vocab does not have a SEP token, reranking will not work\n", __func__);
|
|
ok = false;
|
|
}
|
|
|
|
if (!ok) {
|
|
llama_free(lctx);
|
|
llama_model_free(model);
|
|
|
|
return iparams;
|
|
}
|
|
}
|
|
|
|
// load and optionally apply lora adapters
|
|
for (auto & la : params.lora_adapters) {
|
|
llama_adapter_lora_ptr lora;
|
|
lora.reset(llama_adapter_lora_init(model, la.path.c_str()));
|
|
if (lora == nullptr) {
|
|
LOG_ERR("%s: failed to apply lora adapter '%s'\n", __func__, la.path.c_str());
|
|
llama_free(lctx);
|
|
llama_model_free(model);
|
|
return iparams;
|
|
}
|
|
|
|
la.ptr = lora.get();
|
|
iparams.lora.emplace_back(std::move(lora)); // copy to list of loaded adapters
|
|
}
|
|
|
|
if (!params.lora_init_without_apply) {
|
|
common_set_adapter_lora(lctx, params.lora_adapters);
|
|
}
|
|
|
|
if (params.sampling.ignore_eos && llama_vocab_eos(vocab) == LLAMA_TOKEN_NULL) {
|
|
LOG_WRN("%s: warning: vocab does not have an EOS token, ignoring --ignore-eos\n", __func__);
|
|
params.sampling.ignore_eos = false;
|
|
}
|
|
|
|
// initialize once
|
|
for (llama_token i = 0; i < llama_vocab_n_tokens(vocab); i++) {
|
|
if (llama_vocab_is_eog(vocab, i)) {
|
|
LOG_INF("%s: added %s logit bias = %f\n", __func__, common_token_to_piece(lctx, i).c_str(), -INFINITY);
|
|
params.sampling.logit_bias_eog.push_back({i, -INFINITY});
|
|
}
|
|
}
|
|
|
|
if (params.sampling.ignore_eos) {
|
|
// add EOG biases to the active set of logit biases
|
|
params.sampling.logit_bias.insert(
|
|
params.sampling.logit_bias.end(),
|
|
params.sampling.logit_bias_eog.begin(), params.sampling.logit_bias_eog.end());
|
|
}
|
|
|
|
if (params.sampling.penalty_last_n == -1) {
|
|
LOG_INF("%s: setting penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
|
|
params.sampling.penalty_last_n = llama_n_ctx(lctx);
|
|
}
|
|
|
|
if (params.sampling.dry_penalty_last_n == -1) {
|
|
LOG_INF("%s: setting dry_penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
|
|
params.sampling.dry_penalty_last_n = llama_n_ctx(lctx);
|
|
}
|
|
|
|
if (params.warmup) {
|
|
LOG_WRN("%s: warming up the model with an empty run - please wait ... (--no-warmup to disable)\n", __func__);
|
|
|
|
llama_set_warmup(lctx, true);
|
|
|
|
std::vector<llama_token> tmp;
|
|
llama_token bos = llama_vocab_bos(vocab);
|
|
llama_token eos = llama_vocab_eos(vocab);
|
|
|
|
// some models (e.g. T5) don't have a BOS token
|
|
if (bos != LLAMA_TOKEN_NULL) {
|
|
tmp.push_back(bos);
|
|
}
|
|
if (eos != LLAMA_TOKEN_NULL) {
|
|
tmp.push_back(eos);
|
|
}
|
|
if (tmp.empty()) {
|
|
tmp.push_back(0);
|
|
}
|
|
|
|
if (llama_model_has_encoder(model)) {
|
|
llama_encode(lctx, llama_batch_get_one(tmp.data(), tmp.size()));
|
|
llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
|
|
if (decoder_start_token_id == LLAMA_TOKEN_NULL) {
|
|
decoder_start_token_id = bos;
|
|
}
|
|
tmp.clear();
|
|
tmp.push_back(decoder_start_token_id);
|
|
}
|
|
if (llama_model_has_decoder(model)) {
|
|
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch)));
|
|
}
|
|
llama_memory_clear(llama_get_memory(lctx), true);
|
|
llama_synchronize(lctx);
|
|
llama_perf_context_reset(lctx);
|
|
llama_set_warmup(lctx, false);
|
|
}
|
|
|
|
iparams.model.reset(model);
|
|
iparams.context.reset(lctx);
|
|
|
|
return iparams;
|
|
}
|
|
|
|
std::string get_model_endpoint() {
|
|
const char * model_endpoint_env = getenv("MODEL_ENDPOINT");
|
|
// We still respect the use of environment-variable "HF_ENDPOINT" for backward-compatibility.
|
|
const char * hf_endpoint_env = getenv("HF_ENDPOINT");
|
|
const char * endpoint_env = model_endpoint_env ? model_endpoint_env : hf_endpoint_env;
|
|
std::string model_endpoint = "https://huggingface.co/";
|
|
if (endpoint_env) {
|
|
model_endpoint = endpoint_env;
|
|
if (model_endpoint.back() != '/') model_endpoint += '/';
|
|
}
|
|
return model_endpoint;
|
|
}
|
|
|
|
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora) {
|
|
llama_clear_adapter_lora(ctx);
|
|
for (auto & la : lora) {
|
|
if (la.scale != 0.0f) {
|
|
llama_set_adapter_lora(ctx, la.ptr, la.scale);
|
|
}
|
|
}
|
|
}
|
|
|
|
struct llama_model_params common_model_params_to_llama(common_params & params) {
|
|
auto mparams = llama_model_default_params();
|
|
|
|
if (!params.devices.empty()) {
|
|
mparams.devices = params.devices.data();
|
|
}
|
|
|
|
if (params.n_gpu_layers != -1) {
|
|
mparams.n_gpu_layers = params.n_gpu_layers;
|
|
}
|
|
|
|
mparams.main_gpu = params.main_gpu;
|
|
mparams.split_mode = params.split_mode;
|
|
mparams.tensor_split = params.tensor_split;
|
|
mparams.use_mmap = params.use_mmap;
|
|
mparams.use_mlock = params.use_mlock;
|
|
mparams.check_tensors = params.check_tensors;
|
|
mparams.use_extra_bufts = !params.no_extra_bufts;
|
|
|
|
if (params.kv_overrides.empty()) {
|
|
mparams.kv_overrides = NULL;
|
|
} else {
|
|
GGML_ASSERT(params.kv_overrides.back().key[0] == 0 && "KV overrides not terminated with empty key");
|
|
mparams.kv_overrides = params.kv_overrides.data();
|
|
}
|
|
|
|
if (params.tensor_buft_overrides.empty()) {
|
|
mparams.tensor_buft_overrides = NULL;
|
|
} else {
|
|
GGML_ASSERT(params.tensor_buft_overrides.back().pattern == nullptr && "Tensor buffer overrides not terminated with empty pattern");
|
|
mparams.tensor_buft_overrides = params.tensor_buft_overrides.data();
|
|
}
|
|
|
|
mparams.progress_callback = params.load_progress_callback;
|
|
mparams.progress_callback_user_data = params.load_progress_callback_user_data;
|
|
|
|
return mparams;
|
|
}
|
|
|
|
struct llama_context_params common_context_params_to_llama(const common_params & params) {
|
|
auto cparams = llama_context_default_params();
|
|
|
|
cparams.n_ctx = params.n_ctx;
|
|
cparams.n_seq_max = params.n_parallel;
|
|
cparams.n_batch = params.n_batch;
|
|
cparams.n_ubatch = params.n_ubatch;
|
|
cparams.n_threads = params.cpuparams.n_threads;
|
|
cparams.n_threads_batch = params.cpuparams_batch.n_threads == -1 ?
|
|
params.cpuparams.n_threads : params.cpuparams_batch.n_threads;
|
|
cparams.embeddings = params.embedding;
|
|
cparams.rope_scaling_type = params.rope_scaling_type;
|
|
cparams.rope_freq_base = params.rope_freq_base;
|
|
cparams.rope_freq_scale = params.rope_freq_scale;
|
|
cparams.yarn_ext_factor = params.yarn_ext_factor;
|
|
cparams.yarn_attn_factor = params.yarn_attn_factor;
|
|
cparams.yarn_beta_fast = params.yarn_beta_fast;
|
|
cparams.yarn_beta_slow = params.yarn_beta_slow;
|
|
cparams.yarn_orig_ctx = params.yarn_orig_ctx;
|
|
cparams.pooling_type = params.pooling_type;
|
|
cparams.attention_type = params.attention_type;
|
|
cparams.defrag_thold = params.defrag_thold;
|
|
cparams.cb_eval = params.cb_eval;
|
|
cparams.cb_eval_user_data = params.cb_eval_user_data;
|
|
cparams.offload_kqv = !params.no_kv_offload;
|
|
cparams.flash_attn = params.flash_attn;
|
|
cparams.no_perf = params.no_perf;
|
|
cparams.op_offload = !params.no_op_offload;
|
|
cparams.swa_full = params.swa_full;
|
|
cparams.kv_unified = params.kv_unified;
|
|
|
|
cparams.type_k = params.cache_type_k;
|
|
cparams.type_v = params.cache_type_v;
|
|
|
|
return cparams;
|
|
}
|
|
|
|
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params) {
|
|
struct ggml_threadpool_params tpp;
|
|
|
|
ggml_threadpool_params_init(&tpp, params.n_threads); // setup the defaults
|
|
|
|
if (params.mask_valid) {
|
|
std::memcpy(&tpp.cpumask, ¶ms.cpumask, GGML_MAX_N_THREADS);
|
|
}
|
|
|
|
tpp.prio = params.priority;
|
|
tpp.poll = params.poll;
|
|
tpp.strict_cpu = params.strict_cpu;
|
|
|
|
return tpp;
|
|
}
|
|
|
|
//
|
|
// Batch utils
|
|
//
|
|
|
|
void common_batch_clear(struct llama_batch & batch) {
|
|
batch.n_tokens = 0;
|
|
}
|
|
|
|
void common_batch_add(
|
|
struct llama_batch & batch,
|
|
llama_token id,
|
|
llama_pos pos,
|
|
const std::vector<llama_seq_id> & seq_ids,
|
|
bool logits) {
|
|
GGML_ASSERT(batch.seq_id[batch.n_tokens] && "llama_batch size exceeded");
|
|
|
|
batch.token [batch.n_tokens] = id;
|
|
batch.pos [batch.n_tokens] = pos;
|
|
batch.n_seq_id[batch.n_tokens] = seq_ids.size();
|
|
for (size_t i = 0; i < seq_ids.size(); ++i) {
|
|
batch.seq_id[batch.n_tokens][i] = seq_ids[i];
|
|
}
|
|
batch.logits [batch.n_tokens] = logits;
|
|
|
|
batch.n_tokens++;
|
|
}
|
|
|
|
//
|
|
// Token utils
|
|
//
|
|
|
|
size_t common_lcp(const llama_tokens & a, const llama_tokens & b) {
|
|
size_t i;
|
|
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {}
|
|
|
|
return i;
|
|
}
|
|
|
|
size_t common_lcs(const llama_tokens & a, const llama_tokens & b) {
|
|
// check for empty sequences
|
|
if (a.empty() || b.empty()) {
|
|
return 0;
|
|
}
|
|
|
|
// get the lengths of the input sequences
|
|
size_t a_len = a.size();
|
|
size_t b_len = b.size();
|
|
|
|
// initialize the maximum length of the longest common subsequence (LCS)
|
|
size_t max_length = 0;
|
|
|
|
// use two rows instead of a 2D matrix to optimize space
|
|
std::vector<size_t> prev_row(b_len + 1, 0);
|
|
std::vector<size_t> curr_row(b_len + 1, 0);
|
|
|
|
// iterate through the elements of a
|
|
for (size_t i = 1; i <= a_len; i++) {
|
|
// iterate through the elements of b
|
|
for (size_t j = 1; j <= b_len; j++) {
|
|
// if elements at the current positions match
|
|
if (a[i - 1] == b[j - 1]) {
|
|
// if it's the first element of either sequences, set LCS length to 1
|
|
if (i == 1 || j == 1) {
|
|
curr_row[j] = 1;
|
|
} else {
|
|
// increment LCS length by 1 compared to the previous element
|
|
curr_row[j] = prev_row[j - 1] + 1;
|
|
}
|
|
|
|
// update max_length if necessary
|
|
if (curr_row[j] > max_length) {
|
|
max_length = curr_row[j];
|
|
}
|
|
} else {
|
|
// reset LCS length if elements don't match
|
|
curr_row[j] = 0;
|
|
}
|
|
}
|
|
|
|
// update the previous row for the next iteration
|
|
prev_row = curr_row;
|
|
}
|
|
|
|
// return the maximum length of the LCS
|
|
return max_length;
|
|
}
|
|
|
|
//
|
|
// Vocab utils
|
|
//
|
|
|
|
std::vector<llama_token> common_tokenize(
|
|
const struct llama_context * ctx,
|
|
const std::string & text,
|
|
bool add_special,
|
|
bool parse_special) {
|
|
const llama_model * model = llama_get_model(ctx);
|
|
const llama_vocab * vocab = llama_model_get_vocab(model);
|
|
return common_tokenize(vocab, text, add_special, parse_special);
|
|
}
|
|
|
|
std::vector<llama_token> common_tokenize(
|
|
const struct llama_vocab * vocab,
|
|
const std::string & text,
|
|
bool add_special,
|
|
bool parse_special) {
|
|
// upper limit for the number of tokens
|
|
int n_tokens = text.length() + 2 * add_special;
|
|
std::vector<llama_token> result(n_tokens);
|
|
n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
|
|
if (n_tokens == std::numeric_limits<int32_t>::min()) {
|
|
throw std::runtime_error("Tokenization failed: input text too large, tokenization result exceeds int32_t limit");
|
|
}
|
|
if (n_tokens < 0) {
|
|
result.resize(-n_tokens);
|
|
int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
|
|
GGML_ASSERT(check == -n_tokens);
|
|
} else {
|
|
result.resize(n_tokens);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
std::string common_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
|
|
const llama_model * model = llama_get_model(ctx);
|
|
const llama_vocab * vocab = llama_model_get_vocab(model);
|
|
return common_token_to_piece(vocab, token, special);
|
|
}
|
|
|
|
std::string common_token_to_piece(const struct llama_vocab * vocab, llama_token token, bool special) {
|
|
std::string piece;
|
|
piece.resize(piece.capacity()); // using string internal cache, 15 bytes + '\n'
|
|
const int n_chars = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
|
|
if (n_chars < 0) {
|
|
piece.resize(-n_chars);
|
|
int check = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
|
|
GGML_ASSERT(check == -n_chars);
|
|
}
|
|
else {
|
|
piece.resize(n_chars);
|
|
}
|
|
|
|
return piece;
|
|
}
|
|
|
|
std::string common_detokenize(const struct llama_context * ctx, const std::vector<llama_token> & tokens, bool special) {
|
|
const llama_model * model = llama_get_model(ctx);
|
|
const llama_vocab * vocab = llama_model_get_vocab(model);
|
|
return common_detokenize(vocab, tokens, special);
|
|
}
|
|
|
|
std::string common_detokenize(const struct llama_vocab * vocab, const std::vector<llama_token> & tokens, bool special) {
|
|
std::string text;
|
|
text.resize(std::max(text.capacity(), tokens.size()));
|
|
int32_t n_chars = llama_detokenize(vocab, tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
|
|
if (n_chars < 0) {
|
|
text.resize(-n_chars);
|
|
n_chars = llama_detokenize(vocab, tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
|
|
GGML_ASSERT(n_chars <= (int32_t)text.size()); // whitespace trimming is performed after per-token detokenization
|
|
}
|
|
|
|
text.resize(n_chars);
|
|
|
|
// NOTE: the original tokenizer decodes bytes after collecting the pieces.
|
|
return text;
|
|
}
|
|
|
|
//
|
|
// Embedding utils
|
|
//
|
|
|
|
void common_embd_normalize(const float * inp, float * out, int n, int embd_norm) {
|
|
double sum = 0.0;
|
|
|
|
switch (embd_norm) {
|
|
case -1: // no normalisation
|
|
sum = 1.0;
|
|
break;
|
|
case 0: // max absolute
|
|
for (int i = 0; i < n; i++) {
|
|
if (sum < std::abs(inp[i])) {
|
|
sum = std::abs(inp[i]);
|
|
}
|
|
}
|
|
sum /= 32760.0; // make an int16 range
|
|
break;
|
|
case 2: // euclidean
|
|
for (int i = 0; i < n; i++) {
|
|
sum += inp[i] * inp[i];
|
|
}
|
|
sum = std::sqrt(sum);
|
|
break;
|
|
default: // p-norm (euclidean is p-norm p=2)
|
|
for (int i = 0; i < n; i++) {
|
|
sum += std::pow(std::abs(inp[i]), embd_norm);
|
|
}
|
|
sum = std::pow(sum, 1.0 / embd_norm);
|
|
break;
|
|
}
|
|
|
|
const float norm = sum > 0.0 ? 1.0 / sum : 0.0f;
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
out[i] = inp[i] * norm;
|
|
}
|
|
}
|
|
|
|
float common_embd_similarity_cos(const float * embd1, const float * embd2, int n){
|
|
double sum = 0.0;
|
|
double sum1 = 0.0;
|
|
double sum2 = 0.0;
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
sum += embd1[i] * embd2[i];
|
|
sum1 += embd1[i] * embd1[i];
|
|
sum2 += embd2[i] * embd2[i];
|
|
}
|
|
|
|
// Handle the case where one or both vectors are zero vectors
|
|
if (sum1 == 0.0 || sum2 == 0.0) {
|
|
if (sum1 == 0.0 && sum2 == 0.0) {
|
|
return 1.0f; // two zero vectors are similar
|
|
}
|
|
return 0.0f;
|
|
}
|
|
|
|
return sum / (sqrt(sum1) * sqrt(sum2));
|
|
}
|
|
|
|
//
|
|
// Control vector utils
|
|
//
|
|
|
|
static common_control_vector_data common_control_vector_load_one(const common_control_vector_load_info & load_info) {
|
|
common_control_vector_data result = { -1, {} };
|
|
|
|
ggml_context * ctx = nullptr;
|
|
struct gguf_init_params meta_gguf_params = {
|
|
/* .no_alloc = */ false,
|
|
/* .ctx = */ &ctx,
|
|
};
|
|
struct gguf_context * ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), meta_gguf_params);
|
|
if (!ctx_gguf) {
|
|
LOG_ERR("%s: failed to load control vector file from %s\n", __func__, load_info.fname.c_str());
|
|
return result;
|
|
}
|
|
|
|
int32_t n_tensors = gguf_get_n_tensors(ctx_gguf);
|
|
if (n_tensors == 0) {
|
|
LOG_WRN("%s: no direction tensors found in %s\n", __func__, load_info.fname.c_str());
|
|
}
|
|
|
|
for (int i = 0; i < n_tensors; i++) {
|
|
std::string name = gguf_get_tensor_name(ctx_gguf, i);
|
|
|
|
int layer_idx = -1;
|
|
|
|
// split on '.'
|
|
size_t dotpos = name.find('.');
|
|
if (dotpos != std::string::npos && name.substr(0, dotpos) == "direction") {
|
|
try {
|
|
layer_idx = std::stoi(name.substr(dotpos + 1));
|
|
} catch (...) {
|
|
layer_idx = -1;
|
|
}
|
|
}
|
|
if (layer_idx < 0) {
|
|
LOG_ERR("%s: invalid/unparsable direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
|
|
result.n_embd = -1;
|
|
break;
|
|
} else if (layer_idx == 0) {
|
|
LOG_ERR("%s: invalid (zero) direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
|
|
result.n_embd = -1;
|
|
break;
|
|
}
|
|
|
|
struct ggml_tensor * tensor = ggml_get_tensor(ctx, name.c_str());
|
|
if (tensor->type != GGML_TYPE_F32) {
|
|
LOG_ERR("%s: invalid (non-F32) direction tensor type in %s\n", __func__, load_info.fname.c_str());
|
|
result.n_embd = -1;
|
|
break;
|
|
}
|
|
if (ggml_n_dims(tensor) != 1) {
|
|
LOG_ERR("%s: invalid (non-1D) direction tensor shape in %s\n", __func__, load_info.fname.c_str());
|
|
result.n_embd = -1;
|
|
break;
|
|
}
|
|
|
|
if (result.n_embd == -1) {
|
|
result.n_embd = ggml_nelements(tensor);
|
|
} else if (ggml_nelements(tensor) != result.n_embd) {
|
|
LOG_ERR("%s: direction tensor in %s does not match previous dimensions\n", __func__, load_info.fname.c_str());
|
|
result.n_embd = -1;
|
|
break;
|
|
}
|
|
|
|
// extend if necessary - do not store data for layer 0 (it's not used)
|
|
result.data.resize(std::max(result.data.size(), static_cast<size_t>(result.n_embd * layer_idx)), 0.0f);
|
|
|
|
const float * src = (const float *) tensor->data;
|
|
float * dst = result.data.data() + result.n_embd * (layer_idx - 1); // layer 1 at [0]
|
|
for (int j = 0; j < result.n_embd; j++) {
|
|
dst[j] += src[j] * load_info.strength; // allows multiple directions for same layer in same file
|
|
}
|
|
|
|
}
|
|
|
|
if (result.n_embd == -1) {
|
|
LOG_WRN("%s: skipping %s due to invalid direction tensors\n", __func__, load_info.fname.c_str());
|
|
result.data.clear();
|
|
}
|
|
|
|
gguf_free(ctx_gguf);
|
|
ggml_free(ctx);
|
|
|
|
return result;
|
|
}
|
|
|
|
common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos) {
|
|
common_control_vector_data result = { -1, {} };
|
|
|
|
for (const auto & info : load_infos) {
|
|
auto cur = common_control_vector_load_one(info);
|
|
|
|
if (cur.n_embd == -1) {
|
|
result.n_embd = -1;
|
|
break;
|
|
}
|
|
if (result.n_embd != -1 && result.n_embd != cur.n_embd) {
|
|
LOG_ERR("%s: control vectors in %s does not match previous dimensions\n", __func__, info.fname.c_str());
|
|
result.n_embd = -1;
|
|
break;
|
|
}
|
|
|
|
if (result.n_embd == -1) {
|
|
result = std::move(cur);
|
|
} else {
|
|
result.data.resize(std::max(result.data.size(), cur.data.size()), 0.0f); // extend if necessary
|
|
for (size_t i = 0; i < cur.data.size(); i++) {
|
|
result.data[i] += cur.data[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
if (result.n_embd == -1) {
|
|
LOG_ERR("%s: no valid control vector files passed\n", __func__);
|
|
result.data.clear();
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std::vector<llama_token> & tokens, int64_t stride) {
|
|
const int64_t ne_datapoint = llama_n_ctx(ctx);
|
|
const int64_t ndata = (tokens.size() - ne_datapoint - 1) / stride;
|
|
ggml_opt_dataset_t result = ggml_opt_dataset_init(
|
|
GGML_TYPE_I32, GGML_TYPE_I32, ne_datapoint, ne_datapoint, ndata, /*ndata_shard =*/ 1);
|
|
|
|
llama_token * data = (llama_token *) ggml_opt_dataset_data(result)->data;
|
|
llama_token * labels = (llama_token *) ggml_opt_dataset_labels(result)->data;
|
|
|
|
for (int64_t idata = 0; idata < ndata; ++idata) {
|
|
memcpy(data + idata*ne_datapoint, tokens.data() + idata*stride + 0, ne_datapoint*sizeof(llama_token));
|
|
memcpy(labels + idata*ne_datapoint, tokens.data() + idata*stride + 1, ne_datapoint*sizeof(llama_token));
|
|
}
|
|
|
|
return result;
|
|
}
|