mirror of
https://github.com/ollama/ollama.git
synced 2025-11-11 18:37:00 +01:00
* TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch
This will be redone once my branch is merged upstream in llama.cpp
* feat: Update all patches
There are a number that are no longer needed at all:
- 0003-embeddings: Embeddings entirely overhauled on master
- 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely
overhauled on master
- 0019-metal-add-mean-kernel-14267: Merged upstream
- 0020-CUDA-add-mean-operation-14313: Merged upstream
* feat: Sync llama.cpp and ggml
* fix: Update rsync-filter for all moved/new/removed files
* fix: Add files missing from sync
* fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs
* fix: Add ggml files missing from sync
* fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files
* fix: Remove mtmd main cpp files
* fix: Add missing include in sampling_ext.cpp
* fix: Update llama.go to use mtmd instead of clip/llava
* fix: Add patch for mtmd_input_text
* chore: Ignore *.patched in the patch directory
* fix: Fix support for arch-specific ggml-cpu source files with new arrangement
In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific
implementations were split out into a nested tree structure under
ggml-cpu/arch. This conflicts with standard CGO layout where all
arch-specific source files are expected to live in the same directory as
the parent go module and use suffixes based on GOOS and GOARCH. As such,
there were really two options for getting this to work:
1. Add a patch on top of the GGML sync to rearrange the files to match the
GO layout convention
2. Use CGO directives to conditionally include the nested source files in
the compilation units
This commit does (2) in order to minimize the set of changes needed on top
of the upstream file layout. To get this to work, there are two key things
needed:
1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in
the preprocessor directives
2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to
explicitly include the .c|.cpp files for the given architecture from the
nested directory
* fix: Use mtmd_helper to correctly load the bitmap for the image
* fix: Apply patch for mtmd_text_input
* fix: Add missing stb to llama.cpp rsync-filter
* fix: Add sync'ed stb vendored header
* fix: Use c++17 and include vendor for go wrapper modules
* fix: Update patch 0015 for upstream implementation of uuid
* feat: Bump to the latest tip of the branch
* fix: Update patches for bump
* feat: Bump back to the cenral repo and point at the latest master
This includes granite 4 and a number of other model architectures!
* fix: Revert changes to ggml export GPU UUID patch
* fix: Add patch for GGML_VERSION and GGML_COMMIT constants
* feat: Sync all patched code
* build: Include cmake/common.cmake in ggml sync
* build: Add top-level include for GNUINstallDirs in CMakeLists.txt
This is used to populate CMAKE_INSTALL_BINDIR
* fix: Add a patch to avoid power throttling API on non-msvc windows builds
* fix: Sync patch changes for ggml-cpu.c
* feat: Bump llama.cpp to 4a4f42
This picks up support for Kimi K2 and PLaMO-2
* feat: Sync llama.cpp
* fix: Handle multi-chunk image encodings from mtmd
* fix: Re-number patches after merge with `main`
* feat: Bump to 41e78c in the makefile
* fix: Fix Solar and argsort/copy patches after bump
* fix: Remove Gemma3n CUDA Graphs patch
It was implemented upstream:
https://github.com/ggml-org/llama.cpp/pull/14741
* feat: Sync llama.cpp / ggml after latest bump
* build: Remove unnecessary CFLAGS definitions in cpu.go
* fix: Remove unnecessary additions in the rsync-filter
* fix: Remove unused vendored code for chat template parsing
* Revert "fix: Remove Gemma3n CUDA Graphs patch"
This reverts commit d724caced3.
* fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes
https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394
* fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n
* unwind mxfp4 patch
Prepare to bump ggml with their impl for mxfp4
* bump
* fix windows build error
* Convert tensors at load time
Repack the mxfp4 tensors as ggmls kernels expect them to be.
* convert mlp bf16 to f32
* buffer the conversion better
* reshape earlier
* openai swiglu
* add ids
* split qkv, gate_up
* fix nested alt tags
* fast attention
* remove debug messages
* fix lint
* remove redundant test
* remap values only if source/target are different
* add back i32->i32 copy
* refactor cpu quants
* clean up vendor
* update patch instructions
* clean up patches
* remove webgpu
* update mem
* also handle gpt-oss
* revert convert changes
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
309 lines
7.7 KiB
Go
309 lines
7.7 KiB
Go
package model
|
|
|
|
import (
|
|
"context"
|
|
"errors"
|
|
"fmt"
|
|
_ "image/jpeg"
|
|
_ "image/png"
|
|
"log/slog"
|
|
"os"
|
|
"reflect"
|
|
"strconv"
|
|
"strings"
|
|
|
|
_ "golang.org/x/image/bmp"
|
|
_ "golang.org/x/image/tiff"
|
|
_ "golang.org/x/image/webp"
|
|
|
|
"github.com/ollama/ollama/fs"
|
|
fsggml "github.com/ollama/ollama/fs/ggml"
|
|
"github.com/ollama/ollama/kvcache"
|
|
"github.com/ollama/ollama/logutil"
|
|
"github.com/ollama/ollama/ml"
|
|
_ "github.com/ollama/ollama/ml/backend"
|
|
"github.com/ollama/ollama/model/input"
|
|
)
|
|
|
|
var ErrNoVisionModel = errors.New("this model is missing data required for image input")
|
|
|
|
// Model implements a specific model architecture, defining the forward pass and any model-specific configuration
|
|
type Model interface {
|
|
Forward(ml.Context, input.Batch) (ml.Tensor, error)
|
|
|
|
Backend() ml.Backend
|
|
Config() config
|
|
}
|
|
|
|
// MultimodalProcessor must be implemented by multimodal models.
|
|
type MultimodalProcessor interface {
|
|
// EncodeMultimodal processes a single input (such as an image) and
|
|
// generates an output (typically an embedding) that can be used by the model.
|
|
//
|
|
// The return value is one or more tensors, each with optional model-specific
|
|
// opaque metadata. Typically, the tensors might be views into an embedding
|
|
// with each view representing a chunk of data that can be processed independently
|
|
// in different batches.
|
|
//
|
|
// The result may be cached by the runner.
|
|
EncodeMultimodal(ml.Context, []byte) ([]input.Multimodal, error)
|
|
|
|
// PostTokenize is called after tokenization to allow the model to edit the
|
|
// input stream to correctly arrange multimodal elements.
|
|
//
|
|
// The input is a slice of tokens with the results of EncodeMultimodal interleaved
|
|
// in the order that the user provided them. Each element of the slice will be
|
|
// either a single token or single multimodal object.
|
|
//
|
|
// The model must ensure that inputs are stored according to how they will be
|
|
// processed and stored in the cache. For example, Llava-style models should insert
|
|
// placeholder tokens equal to the feature size of the corresponding image with
|
|
// the image itself attached to and split across these tokens. When Forward is called
|
|
// a partial subset of these tokens may be submitted according to the batch size.
|
|
//
|
|
// This function is also responsible for updating MultimodalHash for any Multimodal
|
|
// that is modified to ensure that there is a unique hash value that accurately
|
|
// represents the contents.
|
|
PostTokenize([]input.Input) ([]input.Input, error)
|
|
}
|
|
|
|
// Base implements the common fields and methods for all models
|
|
type Base struct {
|
|
b ml.Backend
|
|
config
|
|
}
|
|
|
|
type config struct {
|
|
Cache kvcache.Cache
|
|
}
|
|
|
|
// Backend returns the underlying backend that will run the model
|
|
func (m *Base) Backend() ml.Backend {
|
|
return m.b
|
|
}
|
|
|
|
func (m *Base) Config() config {
|
|
return m.config
|
|
}
|
|
|
|
var models = make(map[string]func(fs.Config) (Model, error))
|
|
|
|
// Register registers a model constructor for the given architecture
|
|
func Register(name string, f func(fs.Config) (Model, error)) {
|
|
if _, ok := models[name]; ok {
|
|
panic("model: model already registered")
|
|
}
|
|
|
|
models[name] = f
|
|
}
|
|
|
|
// New initializes a new model instance with the provided configuration based on the metadata in the model file
|
|
func New(modelPath string, params ml.BackendParams) (Model, error) {
|
|
b, err := ml.NewBackend(modelPath, params)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
arch := b.Config().Architecture()
|
|
f, ok := models[arch]
|
|
if !ok {
|
|
return nil, fmt.Errorf("unsupported model architecture %q", arch)
|
|
}
|
|
|
|
m, err := f(b.Config())
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
base := Base{b: b, config: m.Config()}
|
|
|
|
v := reflect.ValueOf(m)
|
|
v.Elem().Set(populateFields(base, v.Elem()))
|
|
return m, nil
|
|
}
|
|
|
|
func NewTextProcessor(s string) (TextProcessor, error) {
|
|
r, err := os.Open(s)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
defer r.Close()
|
|
meta, err := fsggml.Decode(r, -1)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return getTextProcessor(meta.KV())
|
|
}
|
|
|
|
func getTextProcessor(kv fsggml.KV) (TextProcessor, error) {
|
|
arch := kv.Architecture()
|
|
f, ok := models[arch]
|
|
if !ok {
|
|
return nil, fmt.Errorf("unsupported model architecture %q", arch)
|
|
}
|
|
m, err := f(kv)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
tp, ok := m.(TextProcessor)
|
|
if !ok {
|
|
return nil, fmt.Errorf("%v is not a TextProcessor", m)
|
|
}
|
|
return tp, nil
|
|
}
|
|
|
|
func populateFields(base Base, v reflect.Value, tags ...Tag) reflect.Value {
|
|
t := v.Type()
|
|
|
|
if t.Kind() == reflect.Struct {
|
|
allNil := true
|
|
for i := range t.NumField() {
|
|
tt := t.Field(i).Type
|
|
vv := v.Field(i)
|
|
if !vv.CanSet() {
|
|
continue
|
|
}
|
|
|
|
// make a copy
|
|
tagsCopy := tags
|
|
if tag := t.Field(i).Tag.Get("gguf"); tag != "" {
|
|
tagsCopy = append(tagsCopy, ParseTags(tag))
|
|
}
|
|
|
|
if tt == reflect.TypeOf((*Base)(nil)).Elem() {
|
|
vv.Set(reflect.ValueOf(base))
|
|
} else if tt == reflect.TypeOf((*ml.Tensor)(nil)).Elem() {
|
|
var fn func([]Tag) [][]string
|
|
fn = func(tags []Tag) (names [][]string) {
|
|
if len(tags) > 0 {
|
|
localNames := []string{tags[0].Name}
|
|
localNames = append(localNames, tags[0].Alternate...)
|
|
|
|
for _, localName := range localNames {
|
|
fullName := []string{localName}
|
|
nested := fn(tags[1:])
|
|
if len(nested) > 0 {
|
|
for _, rest := range nested {
|
|
names = append(names, append(fullName, rest...))
|
|
}
|
|
} else {
|
|
names = append(names, fullName)
|
|
}
|
|
}
|
|
}
|
|
|
|
return names
|
|
}
|
|
|
|
names := fn(tagsCopy)
|
|
for _, name := range names {
|
|
if tensor := base.Backend().Get(strings.Join(name, ".")); tensor != nil {
|
|
slog.Log(context.TODO(), logutil.LevelTrace, "found tensor", "", tensor)
|
|
vv.Set(reflect.ValueOf(tensor))
|
|
break
|
|
}
|
|
}
|
|
} else if tt.Kind() == reflect.Pointer || tt.Kind() == reflect.Interface {
|
|
setPointer(base, vv, tagsCopy)
|
|
} else if tt.Kind() == reflect.Slice || tt.Kind() == reflect.Array {
|
|
for i := range vv.Len() {
|
|
vvv := vv.Index(i)
|
|
if vvv.Kind() == reflect.Pointer || vvv.Kind() == reflect.Interface {
|
|
setPointer(base, vvv, append(tagsCopy, Tag{Name: strconv.Itoa(i)}))
|
|
} else {
|
|
vvv.Set(populateFields(base, vvv, append(tagsCopy, Tag{Name: strconv.Itoa(i)})...))
|
|
}
|
|
}
|
|
}
|
|
|
|
if !canNil(tt) || !vv.IsNil() {
|
|
allNil = false
|
|
}
|
|
}
|
|
|
|
if allNil {
|
|
return reflect.Zero(t)
|
|
}
|
|
}
|
|
|
|
return v
|
|
}
|
|
|
|
func setPointer(base Base, v reflect.Value, tags []Tag) {
|
|
vv := v
|
|
if v.Kind() == reflect.Interface {
|
|
if v.IsNil() {
|
|
return
|
|
}
|
|
|
|
vv = vv.Elem()
|
|
}
|
|
|
|
vv = vv.Elem()
|
|
if v.IsNil() {
|
|
vv = reflect.New(v.Type().Elem()).Elem()
|
|
}
|
|
|
|
if f := populateFields(base, vv, tags...); f.CanAddr() {
|
|
v.Set(f.Addr())
|
|
}
|
|
}
|
|
|
|
type Tag struct {
|
|
Name string
|
|
Alternate []string
|
|
}
|
|
|
|
func ParseTags(s string) (tag Tag) {
|
|
parts := strings.Split(s, ",")
|
|
if len(parts) > 0 {
|
|
tag.Name = parts[0]
|
|
|
|
for _, part := range parts[1:] {
|
|
if value, ok := strings.CutPrefix(part, "alt:"); ok {
|
|
tag.Alternate = append(tag.Alternate, value)
|
|
}
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
func canNil(t reflect.Type) bool {
|
|
return t.Kind() == reflect.Chan ||
|
|
t.Kind() == reflect.Func ||
|
|
t.Kind() == reflect.Interface ||
|
|
t.Kind() == reflect.Map ||
|
|
t.Kind() == reflect.Pointer ||
|
|
t.Kind() == reflect.Slice
|
|
}
|
|
|
|
func Forward(ctx ml.Context, m Model, inputs []int32, batch input.Batch) (ml.Tensor, error) {
|
|
if len(batch.Positions) != len(batch.Sequences) {
|
|
return nil, fmt.Errorf("length of positions (%v) must match length of seqs (%v)", len(batch.Positions), len(batch.Sequences))
|
|
}
|
|
|
|
if len(batch.Positions) < 1 {
|
|
return nil, errors.New("batch size cannot be less than 1")
|
|
}
|
|
|
|
batch.Inputs = ctx.Input().FromIntSlice(inputs, len(inputs))
|
|
|
|
cache := m.Config().Cache
|
|
if cache != nil {
|
|
err := cache.StartForward(ctx, batch, false)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
t, err := m.Forward(ctx, batch)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
ctx.Forward(t).Compute(t)
|
|
|
|
return t, nil
|
|
}
|