mirror of
https://github.com/ollama/ollama.git
synced 2025-03-27 10:11:54 +01:00
* Include unified vision layers in memory prediction For newer vision models with a single gguf, include the projection estimates. * Adjust CLI to handle both styles of vision model metadata * Wire up new tokenizers for new engine If we're loading the new engine, utilize the new model text processor instead of calling into cgo wrappers for llama.cpp. This also cleans up some tech debt from the older tokenization flow for the C++ server which was no longer used. This also adjusts the grammar handling logic to pass through to the new engine instead of utilizing the cgo schema to grammar call. * Lay foundation for auto selection of new engine
160 lines
3.8 KiB
Go
160 lines
3.8 KiB
Go
package server
|
|
|
|
import (
|
|
"bytes"
|
|
"context"
|
|
"encoding/binary"
|
|
"errors"
|
|
"fmt"
|
|
"log/slog"
|
|
"strings"
|
|
|
|
"github.com/ollama/ollama/api"
|
|
"github.com/ollama/ollama/llm"
|
|
"github.com/ollama/ollama/model/models/mllama"
|
|
"github.com/ollama/ollama/template"
|
|
)
|
|
|
|
type tokenizeFunc func(context.Context, string) ([]int, error)
|
|
|
|
var errTooManyImages = errors.New("vision model only supports a single image per message")
|
|
|
|
// chatPrompt accepts a list of messages and returns the prompt and images that should be used for the next chat turn.
|
|
// chatPrompt truncates any messages that exceed the context window of the model, making sure to always include 1) the
|
|
// latest message and 2) system messages
|
|
func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.Options, msgs []api.Message, tools []api.Tool) (prompt string, images []llm.ImageData, _ error) {
|
|
var system []api.Message
|
|
|
|
isMllama := checkMllamaModelFamily(m)
|
|
|
|
var imageNumTokens int
|
|
// TODO: Ideally we would compute this from the projector metadata but some pieces are implementation dependent
|
|
if isMllama {
|
|
// Our mllama implementation packs all of the embeddings into a single token
|
|
imageNumTokens = 1
|
|
} else {
|
|
// Clip images are represented as 768 tokens, each an embedding
|
|
imageNumTokens = 768
|
|
}
|
|
|
|
n := len(msgs) - 1
|
|
// in reverse, find all messages that fit into context window
|
|
for i := n; i >= 0; i-- {
|
|
if isMllama && len(msgs[i].Images) > 1 {
|
|
return "", nil, errTooManyImages
|
|
}
|
|
|
|
// always include the last message
|
|
if i == n {
|
|
continue
|
|
}
|
|
|
|
system = make([]api.Message, 0)
|
|
for j := range i {
|
|
if msgs[j].Role == "system" {
|
|
system = append(system, msgs[j])
|
|
}
|
|
}
|
|
|
|
var b bytes.Buffer
|
|
if err := m.Template.Execute(&b, template.Values{Messages: append(system, msgs[i:]...), Tools: tools}); err != nil {
|
|
return "", nil, err
|
|
}
|
|
|
|
s, err := tokenize(ctx, b.String())
|
|
if err != nil {
|
|
return "", nil, err
|
|
}
|
|
|
|
ctxLen := len(s)
|
|
if m.ProjectorPaths != nil {
|
|
for _, m := range msgs[i:] {
|
|
ctxLen += imageNumTokens * len(m.Images)
|
|
}
|
|
}
|
|
|
|
if ctxLen > opts.NumCtx {
|
|
slog.Debug("truncating input messages which exceed context length", "truncated", len(msgs[i:]))
|
|
break
|
|
} else {
|
|
n = i
|
|
}
|
|
}
|
|
|
|
currMsgIdx := n
|
|
|
|
for cnt, msg := range msgs[currMsgIdx:] {
|
|
prefix := ""
|
|
imgPrompt := ""
|
|
prompt := msg.Content
|
|
|
|
for _, i := range msg.Images {
|
|
var imgData llm.ImageData
|
|
|
|
if isMllama {
|
|
if len(m.ProjectorPaths) == 0 {
|
|
imgData = llm.ImageData{
|
|
ID: len(images),
|
|
Data: i,
|
|
}
|
|
} else {
|
|
data, opts, err := mllama.Preprocess(bytes.NewReader(i))
|
|
if err != nil {
|
|
return "", nil, err
|
|
}
|
|
|
|
buf := new(bytes.Buffer)
|
|
err = binary.Write(buf, binary.LittleEndian, data)
|
|
if err != nil {
|
|
return "", nil, err
|
|
}
|
|
|
|
ar, ok := opts["aspectRatioIndex"].(int)
|
|
if !ok {
|
|
return "", nil, fmt.Errorf("missing aspect ratio for image")
|
|
}
|
|
|
|
imgData = llm.ImageData{
|
|
ID: len(images),
|
|
Data: buf.Bytes(),
|
|
AspectRatioID: ar,
|
|
}
|
|
}
|
|
imgPrompt = "<|image|>"
|
|
} else {
|
|
imgData = llm.ImageData{
|
|
ID: len(images),
|
|
Data: i,
|
|
}
|
|
}
|
|
|
|
imgTag := fmt.Sprintf("[img-%d]", imgData.ID)
|
|
if !strings.Contains(prompt, "[img]") {
|
|
prefix += imgTag
|
|
} else {
|
|
prompt = strings.Replace(prompt, "[img]", imgTag, 1)
|
|
}
|
|
|
|
images = append(images, imgData)
|
|
}
|
|
msgs[currMsgIdx+cnt].Content = prefix + imgPrompt + prompt
|
|
}
|
|
|
|
// truncate any messages that do not fit into the context window
|
|
var b bytes.Buffer
|
|
if err := m.Template.Execute(&b, template.Values{Messages: append(system, msgs[currMsgIdx:]...), Tools: tools}); err != nil {
|
|
return "", nil, err
|
|
}
|
|
|
|
return b.String(), images, nil
|
|
}
|
|
|
|
func checkMllamaModelFamily(m *Model) bool {
|
|
for _, arch := range m.Config.ModelFamilies {
|
|
if arch == "mllama" {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|