Files
ollama/ml/backend/ggml/ggml.go
2025-03-07 14:08:21 -08:00

904 lines
21 KiB
Go

package ggml
// #cgo CPPFLAGS: -I${SRCDIR}/ggml/include
// #include <stdlib.h>
// #include <stdint.h>
// #include "ggml.h"
// #include "ggml-cpu.h"
// #include "ggml-backend.h"
import "C"
import (
"errors"
"fmt"
"io"
"iter"
"log/slog"
"maps"
"os"
"slices"
"strconv"
"strings"
"unicode"
"unsafe"
"github.com/ollama/ollama/format"
fs "github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/ml"
ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
"golang.org/x/sync/errgroup"
)
func devices() iter.Seq[*C.struct_ggml_backend_device] {
return func(yield func(*C.struct_ggml_backend_device) bool) {
ggml.OnceLoad()
for i := range C.ggml_backend_dev_count() {
if !yield(C.ggml_backend_dev_get(i)) {
return
}
}
}
}
type Backend struct {
meta *fs.GGML
sched *C.struct_ggml_backend_sched
tensors map[string]*C.struct_ggml_tensor
input *C.struct_ggml_backend
output *C.struct_ggml_backend
layers map[int]*C.struct_ggml_backend
flashAttention bool
}
func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
meta, n, err := fs.Decode(r, -1)
if err != nil {
return nil, err
}
slog.Info(
"",
"architecture", meta.KV().Architecture(),
"file_type", meta.KV().FileType(),
"name", meta.KV().String("general.name"),
"description", meta.KV().String("general.description"),
"num_tensors", len(meta.Tensors().Items()),
"num_key_values", len(meta.KV()),
)
type deviceBufferType struct {
d *C.struct_ggml_backend_device
bts []*C.struct_ggml_backend_buffer_type
}
var cpus, accels, gpus []*C.struct_ggml_backend_device
for d := range devices() {
switch C.ggml_backend_dev_type(d) {
case C.GGML_BACKEND_DEVICE_TYPE_CPU:
cpus = append(cpus, d)
case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
accels = append(accels, d)
case C.GGML_BACKEND_DEVICE_TYPE_GPU:
gpus = append(gpus, d)
}
}
var cpuBufferTypes []*C.struct_ggml_backend_buffer_type
for _, d := range append(accels, append(gpus, cpus...)...) {
switch C.ggml_backend_dev_type(d) {
case C.GGML_BACKEND_DEVICE_TYPE_CPU,
C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
cpuBufferTypes = append(cpuBufferTypes, C.ggml_backend_dev_buffer_type(d))
}
}
var sum uint64
var cumsum []uint64
var gpuDeviceBufferTypes []deviceBufferType
for _, d := range gpus {
var free, total C.size_t
C.ggml_backend_dev_memory(d, &free, &total)
sum += uint64(free)
cumsum = append(cumsum, sum)
bt := C.ggml_backend_dev_buffer_type(d)
gpuDeviceBufferTypes = append(gpuDeviceBufferTypes, deviceBufferType{
d: d,
bts: append([]*C.struct_ggml_backend_buffer_type{bt}, cpuBufferTypes...),
})
}
splits := make([]float64, len(cumsum))
for i := range splits {
splits[i] = float64(cumsum[i]) / float64(sum)
}
cpuDeviceBufferTypes := deviceBufferType{C.ggml_backend_dev_by_type(C.GGML_BACKEND_DEVICE_TYPE_CPU), cpuBufferTypes}
input := cpuDeviceBufferTypes
var blocks int
for key, value := range meta.KV() {
if strings.HasSuffix(key, ".block_count") {
blocks += int(value.(uint32))
}
}
assignLayer := func(i int) (temp deviceBufferType) {
if i >= params.NumGPULayers {
return cpuDeviceBufferTypes
}
return gpuDeviceBufferTypes[slices.IndexFunc(splits, func(f float64) bool {
return float64(i)/float64(blocks+1) < f
})]
}
layers := make([]deviceBufferType, blocks)
for i := range layers {
layers[i] = assignLayer(i)
}
output := assignLayer(blocks)
maxTensors := len(meta.Tensors().Items())
maxTensors += 1
maxTensors += blocks * 2
type tensor struct {
source *fs.Tensor
target string
}
targets := make(map[string][]string)
ctxs := make(map[*C.struct_ggml_backend_buffer_type]*C.struct_ggml_context)
createTensor := func(t tensor, bts []*C.struct_ggml_backend_buffer_type) *C.struct_ggml_tensor {
for _, bt := range bts {
if _, ok := ctxs[bt]; !ok {
ctxs[bt] = C.ggml_init(C.struct_ggml_init_params{
mem_size: C.ggml_tensor_overhead() * C.size_t(maxTensors),
no_alloc: true,
})
}
targets[t.source.Name] = append(targets[t.source.Name], t.target)
name := t.source.Name
if t.target != "" {
name = t.target
}
cname := C.CString(name)
defer C.free(unsafe.Pointer(cname))
if tt := C.ggml_get_tensor(ctxs[bt], cname); tt != nil {
return tt
}
tt := C.ggml_new_tensor(ctxs[bt], t.source.Kind, C.int(len(t.source.Shape)), (*C.int64_t)(unsafe.Pointer(&t.source.Shape[0])))
C.ggml_set_name(tt, cname)
slog.Debug("created tensor", "name", name, "shape", t.source.Shape, "dtype", t.source.Kind, "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
//nolint:staticcheck // TODO: check if buffer type supports this tensor
return tt
}
return nil
}
hasPart := func(s string, parts ...string) bool {
split := strings.Split(s, ".")
for _, part := range parts {
if slices.Contains(split, part) {
return true
}
}
return false
}
for _, t := range meta.Tensors().Items() {
switch {
case hasPart(t.Name, "position_embd", "token_embd", "token_norm_embd", "token_types"):
createTensor(tensor{source: t}, input.bts)
case hasPart(t.Name, "cls", "output", "output_norm"):
createTensor(tensor{source: t}, output.bts)
default:
if i := func() int {
if fields := strings.FieldsFunc(t.Name, func(r rune) bool { return !unicode.IsNumber(r) }); len(fields) > 0 {
if i, err := strconv.Atoi(fields[0]); err == nil {
return i
}
}
return -1
}(); i >= 0 {
createTensor(tensor{source: t}, layers[i].bts)
} else {
for i, layer := range layers {
createTensor(tensor{
source: t,
target: "blk." + strconv.Itoa(i) + "." + t.Name,
}, layer.bts)
}
}
}
}
bbs := make(map[*C.struct_ggml_context][]*C.struct_ggml_backend_buffer, len(ctxs))
for bt, c := range ctxs {
if C.ggml_get_first_tensor(c) == nil {
continue
}
b := C.ggml_backend_alloc_ctx_tensors_from_buft(c, bt)
C.ggml_backend_buffer_set_usage(b, C.GGML_BACKEND_BUFFER_USAGE_WEIGHTS)
bbs[c] = append(bbs[c], b)
}
for bs := range maps.Values(bbs) {
for _, b := range bs {
slog.Info("model weights", "buffer", C.GoString(C.ggml_backend_buffer_name(b)), "size", format.HumanBytes2(uint64(C.ggml_backend_buffer_get_size(b))))
}
}
tensors := make(map[string]*C.struct_ggml_tensor)
for _, c := range ctxs {
for t := C.ggml_get_first_tensor(c); t != nil; t = C.ggml_get_next_tensor(c, t) {
tensors[C.GoString(C.ggml_get_name(t))] = t
}
}
sr := io.NewSectionReader(r, int64(meta.Tensors().Offset), n-int64(meta.Tensors().Offset))
var g errgroup.Group
for _, t := range meta.Tensors().Items() {
for _, target := range targets[t.Name] {
g.Go(func() error {
if target == "" {
target = t.Name
}
tt, ok := tensors[target]
if !ok {
return fmt.Errorf("unassigned tensor: %s", t.Name)
}
bts := make([]byte, t.Size())
n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), bts)
if err != nil {
return err
}
if n != len(bts) {
return errors.New("short read")
}
cname := C.CString(t.Name)
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), 0, C.size_t(t.Size()))
C.free(unsafe.Pointer(cname))
return nil
})
}
}
if g.Wait() != nil {
return nil, err
}
deviceBackends := make(map[*C.struct_ggml_backend_device]*C.struct_ggml_backend)
var backends []*C.struct_ggml_backend
var bufts []*C.struct_ggml_backend_buffer_type
for _, d := range append(gpus, append(accels, cpus...)...) {
b := C.ggml_backend_dev_init(d, nil)
backends = append(backends, b)
deviceBackends[d] = b
bt := C.ggml_backend_get_default_buffer_type(b)
if d := C.ggml_backend_get_device(b); C.ggml_backend_dev_type(d) == C.GGML_BACKEND_DEVICE_TYPE_CPU && len(gpus) > 0 {
if hbt := C.ggml_backend_dev_host_buffer_type(d); hbt != nil {
bt = hbt
}
}
bufts = append(bufts, bt)
slog.Info("compute graph", "backend", C.GoString(C.ggml_backend_name(b)), "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
if C.ggml_backend_is_cpu(b) {
C.ggml_backend_cpu_set_n_threads(b, C.int(params.NumThreads))
}
}
return &Backend{
flashAttention: params.FlashAttention,
meta: meta,
tensors: tensors,
sched: C.ggml_backend_sched_new(
(*C.ggml_backend_t)(unsafe.Pointer(&backends[0])),
(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&bufts[0])),
C.int(len(backends)),
C.size_t(max(8192, len(meta.Tensors().Items())*5)),
true,
),
input: deviceBackends[input.d],
output: deviceBackends[output.d],
layers: func() map[int]*C.struct_ggml_backend {
m := make(map[int]*C.struct_ggml_backend)
for i, layer := range layers {
m[i] = deviceBackends[layer.d]
}
return m
}(),
}, nil
}
func init() {
ml.RegisterBackend("ggml", New)
}
func (b *Backend) Config() ml.Config {
return b.meta.KV()
}
func (b *Backend) Get(name string) ml.Tensor {
if t, ok := b.tensors[name]; ok {
return &Tensor{b: b, t: t}
}
return nil
}
func (b *Backend) NewContext() ml.Context {
return b.NewContextSize(max(8192, len(b.meta.Tensors().Items())*5))
}
func (b *Backend) NewContextSize(n int) ml.Context {
return &Context{
b: b,
ctx: C.ggml_init(C.struct_ggml_init_params{
mem_size: C.size_t(n)*C.ggml_tensor_overhead() + C.ggml_graph_overhead_custom(C.size_t(n), false),
no_alloc: true,
}),
backend: C.ggml_backend_sched_get_backend(b.sched, 0),
maxGraphNodes: n,
input: b.input,
output: b.output,
layers: b.layers,
}
}
func (b *Backend) CacheConfig() ml.CacheConfig {
if b.flashAttention {
return ml.CacheConfig{CachePadding: 256, MaskDType: ml.DTypeF16, MaskBatchPadding: C.GGML_KQ_MASK_PAD}
} else {
return ml.CacheConfig{CachePadding: 32, PermutedV: true}
}
}
type Context struct {
b *Backend
ctx *C.struct_ggml_context
graph *C.struct_ggml_cgraph
// backend is the backend used for new tensors
backend *C.struct_ggml_backend
// input is the backend used for inputs
input *C.struct_ggml_backend
// output is the backend used for outputs
output *C.struct_ggml_backend
// output is the backend used for repeating layers
layers map[int]*C.struct_ggml_backend
maxGraphNodes int
}
func (c *Context) Input() ml.Context {
if c.input != nil {
return &Context{
b: c.b,
ctx: c.ctx,
backend: c.input,
maxGraphNodes: c.maxGraphNodes,
}
}
return c
}
func (c *Context) Output() ml.Context {
if c.output != nil {
return &Context{
b: c.b,
ctx: c.ctx,
backend: c.output,
maxGraphNodes: c.maxGraphNodes,
}
}
return c
}
func (c *Context) Layer(i int) ml.Context {
if backend, ok := c.layers[i]; ok {
return &Context{
b: c.b,
ctx: c.ctx,
backend: backend,
maxGraphNodes: c.maxGraphNodes,
}
}
return c
}
func (c *Context) Forward(tensors ...ml.Tensor) ml.Context {
if c.graph == nil {
c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.maxGraphNodes), false)
}
for _, tensor := range tensors {
C.ggml_build_forward_expand(c.graph, tensor.(*Tensor).t)
}
return c
}
func (c *Context) Compute(tensors ...ml.Tensor) {
C.ggml_backend_sched_reset(c.b.sched)
C.ggml_backend_sched_alloc_graph(c.b.sched, c.graph)
C.ggml_backend_sched_graph_compute_async(c.b.sched, c.graph)
needSync := true
sync := func() {
if needSync {
C.ggml_backend_sched_synchronize(c.b.sched)
needSync = false
}
}
for _, t := range tensors {
if C.ggml_nbytes(t.(*Tensor).t) > 0 {
t.(*Tensor).sync = sync
}
}
}
func (c *Context) MaxGraphNodes() int {
return c.maxGraphNodes
}
func shapeToGGML(shape []int) *C.int64_t {
sh := make([]C.int64_t, len(shape))
for i, s := range shape {
sh[i] = C.int64_t(s)
}
return &sh[0]
}
func (c Context) newTensor(dtype ml.DType, shape []int) ml.Tensor {
if len(shape) < 1 || len(shape) > 4 {
panic("unsupported number of dimensions")
}
for _, dim := range shape {
if dim < 1 {
panic("invalid shape")
}
}
var t *C.struct_ggml_tensor
switch dtype {
case ml.DTypeF32:
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F32, C.int(len(shape)), shapeToGGML(shape))
case ml.DTypeF16:
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F16, C.int(len(shape)), shapeToGGML(shape))
case ml.DTypeI32:
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_I32, C.int(len(shape)), shapeToGGML(shape))
default:
panic("unsupported dtype")
}
b := C.ggml_backend_alloc_buffer(c.backend, C.ggml_nbytes(t))
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
return &Tensor{b: c.b, t: t}
}
func (c Context) Empty(dtype ml.DType, shape ...int) ml.Tensor {
return c.newTensor(dtype, shape)
}
func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
t := c.newTensor(dtype, shape)
C.ggml_set_zero(t.(*Tensor).t)
return t
}
func checkShape[S ~[]E, E any](s S, shape ...int) error {
n := len(s)
for _, v := range shape {
n /= v
}
if n != 1 {
return fmt.Errorf("invalid shape: %v", shape)
}
return nil
}
func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
if err := checkShape(s, shape...); err != nil {
return nil, err
}
t := c.newTensor(ml.DTypeF32, shape)
C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
return t, nil
}
func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
if err := checkShape(s, shape...); err != nil {
return nil, err
}
t := c.newTensor(ml.DTypeI32, shape)
C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
return t, nil
}
func (c Context) Close() {
if c.ctx != nil {
C.ggml_free(c.ctx)
}
}
type Tensor struct {
b *Backend
t *C.struct_ggml_tensor
sync func()
}
func (t *Tensor) LogValue() slog.Value {
return slog.GroupValue(
slog.String("name", C.GoString(C.ggml_get_name(t.t))),
slog.String("type", C.GoString(C.ggml_type_name(t.t._type))),
slog.Any("shape", t.Shape()),
)
}
func (t *Tensor) Dim(n int) int {
return int(t.t.ne[n])
}
func (t *Tensor) Stride(n int) int {
return int(t.t.nb[n])
}
func (t *Tensor) Shape() []int {
shape := make([]int, C.ggml_n_dims(t.t))
for i := range shape {
shape[i] = t.Dim(i)
}
return shape
}
func (t *Tensor) Bytes() (data []byte) {
if t.sync != nil {
data = make([]byte, C.ggml_nbytes(t.t))
t.sync()
C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
}
return
}
func (t *Tensor) Floats() (data []float32) {
if t.sync != nil {
data = make([]float32, C.ggml_nelements(t.t))
t.sync()
C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
}
return
}
func (t *Tensor) DType() ml.DType {
switch t.t._type {
case C.GGML_TYPE_F32:
return ml.DTypeF32
case C.GGML_TYPE_F16:
return ml.DTypeF16
case C.GGML_TYPE_I32:
return ml.DTypeI32
default:
return ml.DTypeOther
}
}
func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_add(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
if len(s) > 0 {
return t.Concat(ctx, s[0].Stack(ctx, dim, s[1:]...), dim)
}
return t
}
func (t *Tensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_concat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(dim)),
}
}
func (t *Tensor) Contiguous(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_cont(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_mul(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
mul := C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t)
C.ggml_mul_mat_set_prec(mul, C.GGML_PREC_F32)
return &Tensor{
b: t.b,
t: mul,
}
}
func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
tt := (&Tensor{b: t.b, t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
if b != nil {
tt = tt.Add(ctx, b)
}
return tt
}
func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor {
return (&Tensor{b: t.b, t: C.ggml_rms_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
}
func (t *Tensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
if len(shape) != 4 {
panic("expected 4 dimensions")
}
return &Tensor{
b: t.b,
t: C.ggml_pad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
}
}
func (t *Tensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
if len(shape) != 4 {
panic("expected 4 dimensions")
}
return &Tensor{
b: t.b,
t: C.ggml_permute(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
}
}
func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_get_rows(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_cpy(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
switch len(shape) {
case 1:
return &Tensor{
b: t.b,
t: C.ggml_reshape_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
}
case 2:
return &Tensor{
b: t.b,
t: C.ggml_reshape_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
}
case 3:
return &Tensor{
b: t.b,
t: C.ggml_reshape_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
}
case 4:
return &Tensor{
b: t.b,
t: C.ggml_reshape_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
}
default:
panic("unsupported number of dimensions")
}
}
func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_scale(ctx.(*Context).ctx, t.t, (C.float)(s)),
}
}
func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_soft_max(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_tanh_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Unpad(ctx ml.Context, shape ...int) ml.Tensor {
if len(shape) != 4 {
panic("expected 4 dimensions")
}
return &Tensor{
b: t.b,
t: C.ggml_unpad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
}
}
func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
switch len(shape) {
case 1:
return &Tensor{
b: t.b,
t: C.ggml_view_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.size_t(offset)),
}
case 3:
return &Tensor{
b: t.b,
t: C.ggml_view_2d(ctx.(*Context).ctx, t.t,
C.int64_t(shape[0]), C.int64_t(shape[2]),
C.size_t(shape[1]),
C.size_t(offset)),
}
case 5:
return &Tensor{
b: t.b,
t: C.ggml_view_3d(ctx.(*Context).ctx, t.t,
C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]),
C.size_t(shape[1]), C.size_t(shape[3]),
C.size_t(offset)),
}
case 7:
return &Tensor{
b: t.b,
t: C.ggml_view_4d(ctx.(*Context).ctx, t.t,
C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.int64_t(shape[6]),
C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(shape[5]),
C.size_t(offset)),
}
default:
panic("unsupported number of dimensions")
}
}
const (
ropeTypeNorm C.int = iota
)
func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim uint32, ropeBase, ropeScale float32) ml.Tensor {
if ropeFactors == nil {
ropeFactors = &Tensor{b: t.b}
}
dequant := t.t
if C.ggml_is_quantized(t.t._type) {
dequant = C.ggml_cast(ctx.(*Context).ctx, t.t, C.GGML_TYPE_F32)
}
return &Tensor{
b: t.b,
t: C.ggml_rope_ext(
ctx.(*Context).ctx, dequant, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
C.int(ropeDim),
131072, // YaRN n_ctx_train
ropeTypeNorm, // ROPE_TYPE_NORM
C.float(ropeBase),
C.float(ropeScale),
0., // YaRN ext_factor
1., // YaRN attn_factor
32., // YaRN beta_fast
1., // YaRN beta_slow
),
}
}
func (t *Tensor) GELU(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) SILU(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
}
}
func (t *Tensor) ScaledDotProductAttention(ctx ml.Context, key, value, mask ml.Tensor, scale float64) ml.Tensor {
var kqMask *C.struct_ggml_tensor
if mask != nil {
kqMask = mask.(*Tensor).t
}
query := t.Permute(ctx, 0, 2, 1, 3)
key = key.Permute(ctx, 0, 2, 1, 3)
if t.b.flashAttention {
value = value.Permute(ctx, 0, 2, 1, 3)
kqv := C.ggml_flash_attn_ext(ctx.(*Context).ctx, query.(*Tensor).t, key.(*Tensor).t, value.(*Tensor).t, kqMask, C.float(scale), 0, 0)
C.ggml_flash_attn_ext_set_prec(kqv, C.GGML_PREC_F32)
return &Tensor{b: t.b, t: kqv}
} else {
kq := key.MulmatFullPrec(ctx, query)
kq = &Tensor{
b: t.b,
t: C.ggml_soft_max_ext(ctx.(*Context).ctx, kq.(*Tensor).t, kqMask, C.float(scale), 0),
}
kqv := value.Mulmat(ctx, kq)
return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
}
}