mirror of
https://github.com/ollama/ollama.git
synced 2025-07-28 18:44:08 +02:00
904 lines
21 KiB
Go
904 lines
21 KiB
Go
package ggml
|
|
|
|
// #cgo CPPFLAGS: -I${SRCDIR}/ggml/include
|
|
// #include <stdlib.h>
|
|
// #include <stdint.h>
|
|
// #include "ggml.h"
|
|
// #include "ggml-cpu.h"
|
|
// #include "ggml-backend.h"
|
|
import "C"
|
|
|
|
import (
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"iter"
|
|
"log/slog"
|
|
"maps"
|
|
"os"
|
|
"slices"
|
|
"strconv"
|
|
"strings"
|
|
"unicode"
|
|
"unsafe"
|
|
|
|
"github.com/ollama/ollama/format"
|
|
fs "github.com/ollama/ollama/fs/ggml"
|
|
"github.com/ollama/ollama/ml"
|
|
ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
|
|
"golang.org/x/sync/errgroup"
|
|
)
|
|
|
|
func devices() iter.Seq[*C.struct_ggml_backend_device] {
|
|
return func(yield func(*C.struct_ggml_backend_device) bool) {
|
|
ggml.OnceLoad()
|
|
for i := range C.ggml_backend_dev_count() {
|
|
if !yield(C.ggml_backend_dev_get(i)) {
|
|
return
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
type Backend struct {
|
|
meta *fs.GGML
|
|
sched *C.struct_ggml_backend_sched
|
|
tensors map[string]*C.struct_ggml_tensor
|
|
input *C.struct_ggml_backend
|
|
output *C.struct_ggml_backend
|
|
layers map[int]*C.struct_ggml_backend
|
|
|
|
flashAttention bool
|
|
}
|
|
|
|
func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
|
|
meta, n, err := fs.Decode(r, -1)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
slog.Info(
|
|
"",
|
|
"architecture", meta.KV().Architecture(),
|
|
"file_type", meta.KV().FileType(),
|
|
"name", meta.KV().String("general.name"),
|
|
"description", meta.KV().String("general.description"),
|
|
"num_tensors", len(meta.Tensors().Items()),
|
|
"num_key_values", len(meta.KV()),
|
|
)
|
|
|
|
type deviceBufferType struct {
|
|
d *C.struct_ggml_backend_device
|
|
bts []*C.struct_ggml_backend_buffer_type
|
|
}
|
|
|
|
var cpus, accels, gpus []*C.struct_ggml_backend_device
|
|
for d := range devices() {
|
|
switch C.ggml_backend_dev_type(d) {
|
|
case C.GGML_BACKEND_DEVICE_TYPE_CPU:
|
|
cpus = append(cpus, d)
|
|
case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
|
|
accels = append(accels, d)
|
|
case C.GGML_BACKEND_DEVICE_TYPE_GPU:
|
|
gpus = append(gpus, d)
|
|
}
|
|
}
|
|
|
|
var cpuBufferTypes []*C.struct_ggml_backend_buffer_type
|
|
for _, d := range append(accels, append(gpus, cpus...)...) {
|
|
switch C.ggml_backend_dev_type(d) {
|
|
case C.GGML_BACKEND_DEVICE_TYPE_CPU,
|
|
C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
|
|
cpuBufferTypes = append(cpuBufferTypes, C.ggml_backend_dev_buffer_type(d))
|
|
}
|
|
}
|
|
|
|
var sum uint64
|
|
var cumsum []uint64
|
|
|
|
var gpuDeviceBufferTypes []deviceBufferType
|
|
for _, d := range gpus {
|
|
var free, total C.size_t
|
|
C.ggml_backend_dev_memory(d, &free, &total)
|
|
sum += uint64(free)
|
|
cumsum = append(cumsum, sum)
|
|
|
|
bt := C.ggml_backend_dev_buffer_type(d)
|
|
gpuDeviceBufferTypes = append(gpuDeviceBufferTypes, deviceBufferType{
|
|
d: d,
|
|
bts: append([]*C.struct_ggml_backend_buffer_type{bt}, cpuBufferTypes...),
|
|
})
|
|
}
|
|
|
|
splits := make([]float64, len(cumsum))
|
|
for i := range splits {
|
|
splits[i] = float64(cumsum[i]) / float64(sum)
|
|
}
|
|
|
|
cpuDeviceBufferTypes := deviceBufferType{C.ggml_backend_dev_by_type(C.GGML_BACKEND_DEVICE_TYPE_CPU), cpuBufferTypes}
|
|
input := cpuDeviceBufferTypes
|
|
|
|
var blocks int
|
|
for key, value := range meta.KV() {
|
|
if strings.HasSuffix(key, ".block_count") {
|
|
blocks += int(value.(uint32))
|
|
}
|
|
}
|
|
|
|
assignLayer := func(i int) (temp deviceBufferType) {
|
|
if i >= params.NumGPULayers {
|
|
return cpuDeviceBufferTypes
|
|
}
|
|
|
|
return gpuDeviceBufferTypes[slices.IndexFunc(splits, func(f float64) bool {
|
|
return float64(i)/float64(blocks+1) < f
|
|
})]
|
|
}
|
|
|
|
layers := make([]deviceBufferType, blocks)
|
|
for i := range layers {
|
|
layers[i] = assignLayer(i)
|
|
}
|
|
|
|
output := assignLayer(blocks)
|
|
|
|
maxTensors := len(meta.Tensors().Items())
|
|
maxTensors += 1
|
|
maxTensors += blocks * 2
|
|
|
|
type tensor struct {
|
|
source *fs.Tensor
|
|
target string
|
|
}
|
|
|
|
targets := make(map[string][]string)
|
|
|
|
ctxs := make(map[*C.struct_ggml_backend_buffer_type]*C.struct_ggml_context)
|
|
createTensor := func(t tensor, bts []*C.struct_ggml_backend_buffer_type) *C.struct_ggml_tensor {
|
|
for _, bt := range bts {
|
|
if _, ok := ctxs[bt]; !ok {
|
|
ctxs[bt] = C.ggml_init(C.struct_ggml_init_params{
|
|
mem_size: C.ggml_tensor_overhead() * C.size_t(maxTensors),
|
|
no_alloc: true,
|
|
})
|
|
}
|
|
|
|
targets[t.source.Name] = append(targets[t.source.Name], t.target)
|
|
|
|
name := t.source.Name
|
|
if t.target != "" {
|
|
name = t.target
|
|
}
|
|
|
|
cname := C.CString(name)
|
|
defer C.free(unsafe.Pointer(cname))
|
|
if tt := C.ggml_get_tensor(ctxs[bt], cname); tt != nil {
|
|
return tt
|
|
}
|
|
|
|
tt := C.ggml_new_tensor(ctxs[bt], t.source.Kind, C.int(len(t.source.Shape)), (*C.int64_t)(unsafe.Pointer(&t.source.Shape[0])))
|
|
C.ggml_set_name(tt, cname)
|
|
|
|
slog.Debug("created tensor", "name", name, "shape", t.source.Shape, "dtype", t.source.Kind, "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
|
|
//nolint:staticcheck // TODO: check if buffer type supports this tensor
|
|
return tt
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
hasPart := func(s string, parts ...string) bool {
|
|
split := strings.Split(s, ".")
|
|
for _, part := range parts {
|
|
if slices.Contains(split, part) {
|
|
return true
|
|
}
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
for _, t := range meta.Tensors().Items() {
|
|
switch {
|
|
case hasPart(t.Name, "position_embd", "token_embd", "token_norm_embd", "token_types"):
|
|
createTensor(tensor{source: t}, input.bts)
|
|
case hasPart(t.Name, "cls", "output", "output_norm"):
|
|
createTensor(tensor{source: t}, output.bts)
|
|
default:
|
|
if i := func() int {
|
|
if fields := strings.FieldsFunc(t.Name, func(r rune) bool { return !unicode.IsNumber(r) }); len(fields) > 0 {
|
|
if i, err := strconv.Atoi(fields[0]); err == nil {
|
|
return i
|
|
}
|
|
}
|
|
|
|
return -1
|
|
}(); i >= 0 {
|
|
createTensor(tensor{source: t}, layers[i].bts)
|
|
} else {
|
|
for i, layer := range layers {
|
|
createTensor(tensor{
|
|
source: t,
|
|
target: "blk." + strconv.Itoa(i) + "." + t.Name,
|
|
}, layer.bts)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bbs := make(map[*C.struct_ggml_context][]*C.struct_ggml_backend_buffer, len(ctxs))
|
|
|
|
for bt, c := range ctxs {
|
|
if C.ggml_get_first_tensor(c) == nil {
|
|
continue
|
|
}
|
|
|
|
b := C.ggml_backend_alloc_ctx_tensors_from_buft(c, bt)
|
|
C.ggml_backend_buffer_set_usage(b, C.GGML_BACKEND_BUFFER_USAGE_WEIGHTS)
|
|
bbs[c] = append(bbs[c], b)
|
|
}
|
|
|
|
for bs := range maps.Values(bbs) {
|
|
for _, b := range bs {
|
|
slog.Info("model weights", "buffer", C.GoString(C.ggml_backend_buffer_name(b)), "size", format.HumanBytes2(uint64(C.ggml_backend_buffer_get_size(b))))
|
|
}
|
|
}
|
|
|
|
tensors := make(map[string]*C.struct_ggml_tensor)
|
|
for _, c := range ctxs {
|
|
for t := C.ggml_get_first_tensor(c); t != nil; t = C.ggml_get_next_tensor(c, t) {
|
|
tensors[C.GoString(C.ggml_get_name(t))] = t
|
|
}
|
|
}
|
|
|
|
sr := io.NewSectionReader(r, int64(meta.Tensors().Offset), n-int64(meta.Tensors().Offset))
|
|
var g errgroup.Group
|
|
for _, t := range meta.Tensors().Items() {
|
|
for _, target := range targets[t.Name] {
|
|
g.Go(func() error {
|
|
if target == "" {
|
|
target = t.Name
|
|
}
|
|
|
|
tt, ok := tensors[target]
|
|
if !ok {
|
|
return fmt.Errorf("unassigned tensor: %s", t.Name)
|
|
}
|
|
|
|
bts := make([]byte, t.Size())
|
|
n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), bts)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
if n != len(bts) {
|
|
return errors.New("short read")
|
|
}
|
|
|
|
cname := C.CString(t.Name)
|
|
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), 0, C.size_t(t.Size()))
|
|
C.free(unsafe.Pointer(cname))
|
|
|
|
return nil
|
|
})
|
|
}
|
|
}
|
|
|
|
if g.Wait() != nil {
|
|
return nil, err
|
|
}
|
|
|
|
deviceBackends := make(map[*C.struct_ggml_backend_device]*C.struct_ggml_backend)
|
|
var backends []*C.struct_ggml_backend
|
|
var bufts []*C.struct_ggml_backend_buffer_type
|
|
for _, d := range append(gpus, append(accels, cpus...)...) {
|
|
b := C.ggml_backend_dev_init(d, nil)
|
|
backends = append(backends, b)
|
|
deviceBackends[d] = b
|
|
|
|
bt := C.ggml_backend_get_default_buffer_type(b)
|
|
if d := C.ggml_backend_get_device(b); C.ggml_backend_dev_type(d) == C.GGML_BACKEND_DEVICE_TYPE_CPU && len(gpus) > 0 {
|
|
if hbt := C.ggml_backend_dev_host_buffer_type(d); hbt != nil {
|
|
bt = hbt
|
|
}
|
|
}
|
|
|
|
bufts = append(bufts, bt)
|
|
|
|
slog.Info("compute graph", "backend", C.GoString(C.ggml_backend_name(b)), "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
|
|
|
|
if C.ggml_backend_is_cpu(b) {
|
|
C.ggml_backend_cpu_set_n_threads(b, C.int(params.NumThreads))
|
|
}
|
|
}
|
|
|
|
return &Backend{
|
|
flashAttention: params.FlashAttention,
|
|
meta: meta,
|
|
tensors: tensors,
|
|
sched: C.ggml_backend_sched_new(
|
|
(*C.ggml_backend_t)(unsafe.Pointer(&backends[0])),
|
|
(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&bufts[0])),
|
|
C.int(len(backends)),
|
|
C.size_t(max(8192, len(meta.Tensors().Items())*5)),
|
|
true,
|
|
),
|
|
input: deviceBackends[input.d],
|
|
output: deviceBackends[output.d],
|
|
layers: func() map[int]*C.struct_ggml_backend {
|
|
m := make(map[int]*C.struct_ggml_backend)
|
|
for i, layer := range layers {
|
|
m[i] = deviceBackends[layer.d]
|
|
}
|
|
return m
|
|
}(),
|
|
}, nil
|
|
}
|
|
|
|
func init() {
|
|
ml.RegisterBackend("ggml", New)
|
|
}
|
|
|
|
func (b *Backend) Config() ml.Config {
|
|
return b.meta.KV()
|
|
}
|
|
|
|
func (b *Backend) Get(name string) ml.Tensor {
|
|
if t, ok := b.tensors[name]; ok {
|
|
return &Tensor{b: b, t: t}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func (b *Backend) NewContext() ml.Context {
|
|
return b.NewContextSize(max(8192, len(b.meta.Tensors().Items())*5))
|
|
}
|
|
|
|
func (b *Backend) NewContextSize(n int) ml.Context {
|
|
return &Context{
|
|
b: b,
|
|
ctx: C.ggml_init(C.struct_ggml_init_params{
|
|
mem_size: C.size_t(n)*C.ggml_tensor_overhead() + C.ggml_graph_overhead_custom(C.size_t(n), false),
|
|
no_alloc: true,
|
|
}),
|
|
backend: C.ggml_backend_sched_get_backend(b.sched, 0),
|
|
maxGraphNodes: n,
|
|
input: b.input,
|
|
output: b.output,
|
|
layers: b.layers,
|
|
}
|
|
}
|
|
|
|
func (b *Backend) CacheConfig() ml.CacheConfig {
|
|
if b.flashAttention {
|
|
return ml.CacheConfig{CachePadding: 256, MaskDType: ml.DTypeF16, MaskBatchPadding: C.GGML_KQ_MASK_PAD}
|
|
} else {
|
|
return ml.CacheConfig{CachePadding: 32, PermutedV: true}
|
|
}
|
|
}
|
|
|
|
type Context struct {
|
|
b *Backend
|
|
|
|
ctx *C.struct_ggml_context
|
|
graph *C.struct_ggml_cgraph
|
|
|
|
// backend is the backend used for new tensors
|
|
backend *C.struct_ggml_backend
|
|
|
|
// input is the backend used for inputs
|
|
input *C.struct_ggml_backend
|
|
|
|
// output is the backend used for outputs
|
|
output *C.struct_ggml_backend
|
|
|
|
// output is the backend used for repeating layers
|
|
layers map[int]*C.struct_ggml_backend
|
|
|
|
maxGraphNodes int
|
|
}
|
|
|
|
func (c *Context) Input() ml.Context {
|
|
if c.input != nil {
|
|
return &Context{
|
|
b: c.b,
|
|
ctx: c.ctx,
|
|
backend: c.input,
|
|
maxGraphNodes: c.maxGraphNodes,
|
|
}
|
|
}
|
|
|
|
return c
|
|
}
|
|
|
|
func (c *Context) Output() ml.Context {
|
|
if c.output != nil {
|
|
return &Context{
|
|
b: c.b,
|
|
ctx: c.ctx,
|
|
backend: c.output,
|
|
maxGraphNodes: c.maxGraphNodes,
|
|
}
|
|
}
|
|
|
|
return c
|
|
}
|
|
|
|
func (c *Context) Layer(i int) ml.Context {
|
|
if backend, ok := c.layers[i]; ok {
|
|
return &Context{
|
|
b: c.b,
|
|
ctx: c.ctx,
|
|
backend: backend,
|
|
maxGraphNodes: c.maxGraphNodes,
|
|
}
|
|
}
|
|
|
|
return c
|
|
}
|
|
|
|
func (c *Context) Forward(tensors ...ml.Tensor) ml.Context {
|
|
if c.graph == nil {
|
|
c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.maxGraphNodes), false)
|
|
}
|
|
|
|
for _, tensor := range tensors {
|
|
C.ggml_build_forward_expand(c.graph, tensor.(*Tensor).t)
|
|
}
|
|
|
|
return c
|
|
}
|
|
|
|
func (c *Context) Compute(tensors ...ml.Tensor) {
|
|
C.ggml_backend_sched_reset(c.b.sched)
|
|
C.ggml_backend_sched_alloc_graph(c.b.sched, c.graph)
|
|
C.ggml_backend_sched_graph_compute_async(c.b.sched, c.graph)
|
|
|
|
needSync := true
|
|
sync := func() {
|
|
if needSync {
|
|
C.ggml_backend_sched_synchronize(c.b.sched)
|
|
needSync = false
|
|
}
|
|
}
|
|
|
|
for _, t := range tensors {
|
|
if C.ggml_nbytes(t.(*Tensor).t) > 0 {
|
|
t.(*Tensor).sync = sync
|
|
}
|
|
}
|
|
}
|
|
|
|
func (c *Context) MaxGraphNodes() int {
|
|
return c.maxGraphNodes
|
|
}
|
|
|
|
func shapeToGGML(shape []int) *C.int64_t {
|
|
sh := make([]C.int64_t, len(shape))
|
|
for i, s := range shape {
|
|
sh[i] = C.int64_t(s)
|
|
}
|
|
|
|
return &sh[0]
|
|
}
|
|
|
|
func (c Context) newTensor(dtype ml.DType, shape []int) ml.Tensor {
|
|
if len(shape) < 1 || len(shape) > 4 {
|
|
panic("unsupported number of dimensions")
|
|
}
|
|
|
|
for _, dim := range shape {
|
|
if dim < 1 {
|
|
panic("invalid shape")
|
|
}
|
|
}
|
|
|
|
var t *C.struct_ggml_tensor
|
|
switch dtype {
|
|
case ml.DTypeF32:
|
|
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F32, C.int(len(shape)), shapeToGGML(shape))
|
|
case ml.DTypeF16:
|
|
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F16, C.int(len(shape)), shapeToGGML(shape))
|
|
case ml.DTypeI32:
|
|
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_I32, C.int(len(shape)), shapeToGGML(shape))
|
|
default:
|
|
panic("unsupported dtype")
|
|
}
|
|
|
|
b := C.ggml_backend_alloc_buffer(c.backend, C.ggml_nbytes(t))
|
|
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
|
|
return &Tensor{b: c.b, t: t}
|
|
}
|
|
|
|
func (c Context) Empty(dtype ml.DType, shape ...int) ml.Tensor {
|
|
return c.newTensor(dtype, shape)
|
|
}
|
|
|
|
func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
|
|
t := c.newTensor(dtype, shape)
|
|
C.ggml_set_zero(t.(*Tensor).t)
|
|
return t
|
|
}
|
|
|
|
func checkShape[S ~[]E, E any](s S, shape ...int) error {
|
|
n := len(s)
|
|
for _, v := range shape {
|
|
n /= v
|
|
}
|
|
|
|
if n != 1 {
|
|
return fmt.Errorf("invalid shape: %v", shape)
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
|
|
if err := checkShape(s, shape...); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
t := c.newTensor(ml.DTypeF32, shape)
|
|
C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
|
|
return t, nil
|
|
}
|
|
|
|
func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
|
|
if err := checkShape(s, shape...); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
t := c.newTensor(ml.DTypeI32, shape)
|
|
C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
|
|
return t, nil
|
|
}
|
|
|
|
func (c Context) Close() {
|
|
if c.ctx != nil {
|
|
C.ggml_free(c.ctx)
|
|
}
|
|
}
|
|
|
|
type Tensor struct {
|
|
b *Backend
|
|
t *C.struct_ggml_tensor
|
|
sync func()
|
|
}
|
|
|
|
func (t *Tensor) LogValue() slog.Value {
|
|
return slog.GroupValue(
|
|
slog.String("name", C.GoString(C.ggml_get_name(t.t))),
|
|
slog.String("type", C.GoString(C.ggml_type_name(t.t._type))),
|
|
slog.Any("shape", t.Shape()),
|
|
)
|
|
}
|
|
|
|
func (t *Tensor) Dim(n int) int {
|
|
return int(t.t.ne[n])
|
|
}
|
|
|
|
func (t *Tensor) Stride(n int) int {
|
|
return int(t.t.nb[n])
|
|
}
|
|
|
|
func (t *Tensor) Shape() []int {
|
|
shape := make([]int, C.ggml_n_dims(t.t))
|
|
for i := range shape {
|
|
shape[i] = t.Dim(i)
|
|
}
|
|
|
|
return shape
|
|
}
|
|
|
|
func (t *Tensor) Bytes() (data []byte) {
|
|
if t.sync != nil {
|
|
data = make([]byte, C.ggml_nbytes(t.t))
|
|
|
|
t.sync()
|
|
C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
func (t *Tensor) Floats() (data []float32) {
|
|
if t.sync != nil {
|
|
data = make([]float32, C.ggml_nelements(t.t))
|
|
|
|
t.sync()
|
|
C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
func (t *Tensor) DType() ml.DType {
|
|
switch t.t._type {
|
|
case C.GGML_TYPE_F32:
|
|
return ml.DTypeF32
|
|
case C.GGML_TYPE_F16:
|
|
return ml.DTypeF16
|
|
case C.GGML_TYPE_I32:
|
|
return ml.DTypeI32
|
|
default:
|
|
return ml.DTypeOther
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_add(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
|
|
if len(s) > 0 {
|
|
return t.Concat(ctx, s[0].Stack(ctx, dim, s[1:]...), dim)
|
|
}
|
|
|
|
return t
|
|
}
|
|
|
|
func (t *Tensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_concat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(dim)),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Contiguous(ctx ml.Context) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_cont(ctx.(*Context).ctx, t.t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_mul(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
mul := C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t)
|
|
C.ggml_mul_mat_set_prec(mul, C.GGML_PREC_F32)
|
|
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: mul,
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
|
|
tt := (&Tensor{b: t.b, t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
|
|
if b != nil {
|
|
tt = tt.Add(ctx, b)
|
|
}
|
|
|
|
return tt
|
|
}
|
|
|
|
func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor {
|
|
return (&Tensor{b: t.b, t: C.ggml_rms_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
|
|
}
|
|
|
|
func (t *Tensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
|
|
if len(shape) != 4 {
|
|
panic("expected 4 dimensions")
|
|
}
|
|
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_pad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
|
|
if len(shape) != 4 {
|
|
panic("expected 4 dimensions")
|
|
}
|
|
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_permute(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_get_rows(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_cpy(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
|
|
switch len(shape) {
|
|
case 1:
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_reshape_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
|
|
}
|
|
case 2:
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_reshape_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
|
|
}
|
|
case 3:
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_reshape_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
|
|
}
|
|
case 4:
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_reshape_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
|
|
}
|
|
default:
|
|
panic("unsupported number of dimensions")
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_scale(ctx.(*Context).ctx, t.t, (C.float)(s)),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_soft_max(ctx.(*Context).ctx, t.t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_tanh_inplace(ctx.(*Context).ctx, t.t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Unpad(ctx ml.Context, shape ...int) ml.Tensor {
|
|
if len(shape) != 4 {
|
|
panic("expected 4 dimensions")
|
|
}
|
|
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_unpad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
|
|
switch len(shape) {
|
|
case 1:
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_view_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.size_t(offset)),
|
|
}
|
|
case 3:
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_view_2d(ctx.(*Context).ctx, t.t,
|
|
C.int64_t(shape[0]), C.int64_t(shape[2]),
|
|
C.size_t(shape[1]),
|
|
C.size_t(offset)),
|
|
}
|
|
case 5:
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_view_3d(ctx.(*Context).ctx, t.t,
|
|
C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]),
|
|
C.size_t(shape[1]), C.size_t(shape[3]),
|
|
C.size_t(offset)),
|
|
}
|
|
case 7:
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_view_4d(ctx.(*Context).ctx, t.t,
|
|
C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.int64_t(shape[6]),
|
|
C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(shape[5]),
|
|
C.size_t(offset)),
|
|
}
|
|
default:
|
|
panic("unsupported number of dimensions")
|
|
}
|
|
}
|
|
|
|
const (
|
|
ropeTypeNorm C.int = iota
|
|
)
|
|
|
|
func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim uint32, ropeBase, ropeScale float32) ml.Tensor {
|
|
if ropeFactors == nil {
|
|
ropeFactors = &Tensor{b: t.b}
|
|
}
|
|
|
|
dequant := t.t
|
|
if C.ggml_is_quantized(t.t._type) {
|
|
dequant = C.ggml_cast(ctx.(*Context).ctx, t.t, C.GGML_TYPE_F32)
|
|
}
|
|
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_rope_ext(
|
|
ctx.(*Context).ctx, dequant, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
|
|
C.int(ropeDim),
|
|
131072, // YaRN n_ctx_train
|
|
ropeTypeNorm, // ROPE_TYPE_NORM
|
|
C.float(ropeBase),
|
|
C.float(ropeScale),
|
|
0., // YaRN ext_factor
|
|
1., // YaRN attn_factor
|
|
32., // YaRN beta_fast
|
|
1., // YaRN beta_slow
|
|
),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) GELU(ctx ml.Context) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) SILU(ctx ml.Context) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) ScaledDotProductAttention(ctx ml.Context, key, value, mask ml.Tensor, scale float64) ml.Tensor {
|
|
var kqMask *C.struct_ggml_tensor
|
|
if mask != nil {
|
|
kqMask = mask.(*Tensor).t
|
|
}
|
|
|
|
query := t.Permute(ctx, 0, 2, 1, 3)
|
|
key = key.Permute(ctx, 0, 2, 1, 3)
|
|
|
|
if t.b.flashAttention {
|
|
value = value.Permute(ctx, 0, 2, 1, 3)
|
|
|
|
kqv := C.ggml_flash_attn_ext(ctx.(*Context).ctx, query.(*Tensor).t, key.(*Tensor).t, value.(*Tensor).t, kqMask, C.float(scale), 0, 0)
|
|
C.ggml_flash_attn_ext_set_prec(kqv, C.GGML_PREC_F32)
|
|
return &Tensor{b: t.b, t: kqv}
|
|
} else {
|
|
kq := key.MulmatFullPrec(ctx, query)
|
|
kq = &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_soft_max_ext(ctx.(*Context).ctx, kq.(*Tensor).t, kqMask, C.float(scale), 0),
|
|
}
|
|
|
|
kqv := value.Mulmat(ctx, kq)
|
|
return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
|
}
|
|
}
|