mirror of
https://github.com/ollama/ollama.git
synced 2025-03-29 19:22:16 +01:00
We need to sync before retrieving data after async computation. It is also important to ensure that the Go buffer is not moved by the GC across function calls so we do a synchronous copy.
614 lines
14 KiB
Go
614 lines
14 KiB
Go
package ggml
|
|
|
|
// #cgo CPPFLAGS: -I${SRCDIR}/ggml/include
|
|
// #include <stdlib.h>
|
|
// #include <stdint.h>
|
|
// #include "ggml.h"
|
|
// #include "ggml-cpu.h"
|
|
// #include "ggml-backend.h"
|
|
import "C"
|
|
|
|
import (
|
|
"fmt"
|
|
"io"
|
|
"log/slog"
|
|
"os"
|
|
"sync"
|
|
"unsafe"
|
|
|
|
"github.com/ollama/ollama/format"
|
|
fs "github.com/ollama/ollama/fs/ggml"
|
|
"github.com/ollama/ollama/ml"
|
|
"golang.org/x/sync/errgroup"
|
|
|
|
ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
|
|
)
|
|
|
|
type device struct {
|
|
d *C.struct_ggml_backend_device
|
|
}
|
|
|
|
func (d device) LogValue() slog.Value {
|
|
var free, total uint64
|
|
C.ggml_backend_dev_memory(d.d, (*C.size_t)(&free), (*C.size_t)(&total))
|
|
|
|
kind := "unknown"
|
|
switch C.ggml_backend_dev_type(d.d) {
|
|
case C.GGML_BACKEND_DEVICE_TYPE_CPU:
|
|
kind = "cpu"
|
|
case C.GGML_BACKEND_DEVICE_TYPE_GPU:
|
|
kind = "gpu"
|
|
case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
|
|
kind = "accel"
|
|
}
|
|
|
|
return slog.GroupValue(
|
|
slog.String("name", C.GoString(C.ggml_backend_dev_name(d.d))),
|
|
slog.String("description", C.GoString(C.ggml_backend_dev_description(d.d))),
|
|
slog.String("kind", kind),
|
|
slog.String("free", format.HumanBytes2(free)),
|
|
slog.String("total", format.HumanBytes2(total)),
|
|
)
|
|
}
|
|
|
|
var devices = sync.OnceValue(func() []device {
|
|
ggml.OnceLoad()
|
|
|
|
s := make([]device, C.ggml_backend_dev_count())
|
|
for i := range s {
|
|
s[i] = device{C.ggml_backend_dev_get(C.size_t(i))}
|
|
}
|
|
|
|
return s
|
|
})
|
|
|
|
type Backend struct {
|
|
meta *fs.GGML
|
|
cpus, gpus []Context
|
|
tensors map[string]*Context
|
|
}
|
|
|
|
func New(r *os.File) (ml.Backend, error) {
|
|
meta, n, err := fs.Decode(r, -1)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
slog.Info(
|
|
"",
|
|
"architecture", meta.KV().Architecture(),
|
|
"file_type", meta.KV().FileType(),
|
|
"name", meta.KV().String("general.name"),
|
|
"description", meta.KV().String("general.description"),
|
|
"num_tensors", len(meta.Tensors().Items()),
|
|
"num_key_values", len(meta.KV()),
|
|
)
|
|
|
|
var cpus, gpus []Context
|
|
for _, d := range devices() {
|
|
switch C.ggml_backend_dev_type(d.d) {
|
|
case C.GGML_BACKEND_DEVICE_TYPE_CPU,
|
|
C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
|
|
slog.Info("cpu", "device", d)
|
|
cpus = append(cpus, Context{
|
|
ctx: C.ggml_init(C.struct_ggml_init_params{
|
|
mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
|
|
no_alloc: true,
|
|
}),
|
|
backend: C.ggml_backend_dev_init(d.d, nil),
|
|
})
|
|
case C.GGML_BACKEND_DEVICE_TYPE_GPU:
|
|
slog.Info("gpu", "device", d)
|
|
gpus = append(gpus, Context{
|
|
ctx: C.ggml_init(C.struct_ggml_init_params{
|
|
mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
|
|
no_alloc: true,
|
|
}),
|
|
backend: C.ggml_backend_dev_init(d.d, nil),
|
|
})
|
|
}
|
|
}
|
|
|
|
ctxFunc := func(s []Context) (*Context, error) {
|
|
for _, e := range s {
|
|
return &e, nil
|
|
}
|
|
|
|
return nil, fmt.Errorf("no devices available")
|
|
}
|
|
|
|
tensors := make(map[*fs.Tensor]*Context, len(meta.Tensors().Items()))
|
|
for _, t := range meta.Tensors().Items() {
|
|
c, err := ctxFunc(append(gpus, cpus...))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
func() {
|
|
tt := C.ggml_new_tensor(c.ctx, t.Kind, C.int(len(t.Shape)), (*C.int64_t)(unsafe.Pointer(&t.Shape[0])))
|
|
|
|
cname := C.CString(t.Name)
|
|
defer C.free(unsafe.Pointer(cname))
|
|
C.ggml_set_name(tt, cname)
|
|
|
|
tensors[t] = c
|
|
}()
|
|
}
|
|
|
|
for _, b := range append(gpus, cpus...) {
|
|
C.ggml_backend_alloc_ctx_tensors(b.ctx, b.backend)
|
|
}
|
|
|
|
sr := io.NewSectionReader(r, int64(meta.Tensors().Offset), n-int64(meta.Tensors().Offset))
|
|
|
|
var g errgroup.Group
|
|
for t, c := range tensors {
|
|
g.Go(func() error {
|
|
bts := make([]byte, t.Size())
|
|
n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), bts)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
if n != int(t.Size()) {
|
|
return fmt.Errorf("expected %d bytes, got %d", t.Size(), n)
|
|
}
|
|
|
|
cname := C.CString(t.Name)
|
|
defer C.free(unsafe.Pointer(cname))
|
|
|
|
C.ggml_backend_tensor_set(C.ggml_get_tensor(c.ctx, cname), unsafe.Pointer(&bts[0]), 0, C.size_t(n))
|
|
return nil
|
|
})
|
|
}
|
|
|
|
if err := g.Wait(); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return &Backend{
|
|
meta: meta,
|
|
cpus: cpus,
|
|
gpus: gpus,
|
|
}, nil
|
|
}
|
|
|
|
func init() {
|
|
ml.RegisterBackend("ggml", New)
|
|
}
|
|
|
|
func (b *Backend) Config() ml.Config {
|
|
return b.meta.KV()
|
|
}
|
|
|
|
func (b *Backend) Get(name string) ml.Tensor {
|
|
cname := C.CString(name)
|
|
defer C.free(unsafe.Pointer(cname))
|
|
|
|
for _, c := range append(b.gpus, b.cpus...) {
|
|
if t := C.ggml_get_tensor(c.ctx, cname); t != nil {
|
|
return &Tensor{t: t}
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func (b *Backend) NewContext() ml.Context {
|
|
nodes := max(8192, len(b.meta.Tensors().Items())*5)
|
|
c := C.ggml_init(C.struct_ggml_init_params{
|
|
mem_buffer: nil,
|
|
mem_size: C.size_t(nodes)*C.ggml_tensor_overhead() + C.ggml_graph_overhead_custom(C.size_t(nodes), false),
|
|
no_alloc: true,
|
|
})
|
|
|
|
backends := make([]*C.struct_ggml_backend, len(b.gpus)+len(b.cpus))
|
|
bufts := make([]*C.struct_ggml_backend_buffer_type, len(b.gpus)+len(b.cpus))
|
|
for i, c := range append(b.gpus, b.cpus...) {
|
|
backends[i] = c.backend
|
|
bufts[i] = C.ggml_backend_get_default_buffer_type(c.backend)
|
|
}
|
|
|
|
return &Context{
|
|
ctx: c,
|
|
backend: backends[0],
|
|
nodes: nodes,
|
|
sched: C.ggml_backend_sched_new(
|
|
(*C.ggml_backend_t)(unsafe.Pointer(&backends[0])),
|
|
(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&bufts[0])),
|
|
C.int(len(backends)),
|
|
C.size_t(nodes),
|
|
true,
|
|
),
|
|
}
|
|
}
|
|
|
|
type Context struct {
|
|
ctx *C.struct_ggml_context
|
|
backend *C.struct_ggml_backend
|
|
|
|
sched *C.struct_ggml_backend_sched
|
|
graph *C.struct_ggml_cgraph
|
|
nodes int
|
|
}
|
|
|
|
func (c *Context) Forward(t ml.Tensor) {
|
|
if c.graph == nil {
|
|
c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.nodes), false)
|
|
}
|
|
|
|
C.ggml_build_forward_expand(c.graph, t.(*Tensor).t)
|
|
}
|
|
|
|
func (c *Context) Compute(tensors ...ml.Tensor) {
|
|
C.ggml_backend_sched_graph_compute_async(c.sched, c.graph)
|
|
|
|
needSync := true
|
|
sync := func() {
|
|
if needSync {
|
|
C.ggml_backend_sched_synchronize(c.sched)
|
|
needSync = false
|
|
}
|
|
}
|
|
|
|
for _, t := range tensors {
|
|
if C.ggml_nbytes(t.(*Tensor).t) > 0 {
|
|
t.(*Tensor).sync = sync
|
|
}
|
|
}
|
|
}
|
|
|
|
func shapeToGGML(shape []int) *C.int64_t {
|
|
sh := make([]C.int64_t, len(shape))
|
|
for i, s := range shape {
|
|
sh[i] = (C.int64_t)(s)
|
|
}
|
|
|
|
return &sh[0]
|
|
}
|
|
|
|
func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
|
|
if len(shape) < 1 || len(shape) > 4 {
|
|
panic("unsupported number of dimensions")
|
|
}
|
|
|
|
for _, dim := range shape {
|
|
if dim < 1 {
|
|
panic("invalid shape")
|
|
}
|
|
}
|
|
|
|
var t *C.struct_ggml_tensor
|
|
switch dtype {
|
|
case ml.DTypeF32:
|
|
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F32, C.int(len(shape)), shapeToGGML(shape))
|
|
case ml.DTypeI32:
|
|
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_I32, C.int(len(shape)), shapeToGGML(shape))
|
|
default:
|
|
panic("unsupported dtype")
|
|
}
|
|
|
|
b := C.ggml_backend_alloc_buffer(c.backend, C.ggml_nbytes(t))
|
|
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
|
|
C.ggml_set_zero(t)
|
|
return &Tensor{t: t}
|
|
}
|
|
|
|
func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype uint32) (ml.Tensor, error) {
|
|
n := len(s)
|
|
|
|
if n == 0 {
|
|
var shape C.int64_t = 0
|
|
t := C.ggml_new_tensor(ctx.ctx, dtype, 1, &shape)
|
|
return &Tensor{t: t}, nil
|
|
}
|
|
|
|
for _, v := range shape {
|
|
n /= v
|
|
}
|
|
|
|
if n != 1 {
|
|
return nil, fmt.Errorf("invalid shape %v for %d elements", shape, len(s))
|
|
}
|
|
|
|
t := C.ggml_new_tensor(ctx.ctx, dtype, C.int(len(shape)), shapeToGGML(shape))
|
|
b := C.ggml_backend_alloc_buffer(ctx.backend, C.ggml_nbytes(t))
|
|
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
|
|
C.ggml_backend_tensor_set(t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t))
|
|
return &Tensor{t: t}, nil
|
|
}
|
|
|
|
func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
|
|
return fromSlice(c, s, shape, C.GGML_TYPE_F32)
|
|
}
|
|
|
|
func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
|
|
return fromSlice(c, s, shape, C.GGML_TYPE_I32)
|
|
}
|
|
|
|
func (c *Context) Close() {
|
|
C.ggml_backend_sched_free(c.sched)
|
|
C.ggml_free(c.ctx)
|
|
}
|
|
|
|
type Tensor struct {
|
|
t *C.struct_ggml_tensor
|
|
sync func()
|
|
}
|
|
|
|
func (t *Tensor) LogValue() slog.Value {
|
|
return slog.GroupValue(
|
|
slog.String("name", C.GoString(C.ggml_get_name(t.t))),
|
|
slog.String("type", C.GoString(C.ggml_type_name(t.t._type))),
|
|
slog.Any("shape", t.Shape()),
|
|
)
|
|
}
|
|
|
|
func (t *Tensor) Dim(n int) int {
|
|
return int(t.t.ne[n])
|
|
}
|
|
|
|
func (t *Tensor) Stride(n int) int {
|
|
return int(t.t.nb[n])
|
|
}
|
|
|
|
func (t *Tensor) Shape() []int {
|
|
shape := make([]int, C.ggml_n_dims(t.t))
|
|
for i := range shape {
|
|
shape[i] = t.Dim(i)
|
|
}
|
|
|
|
return shape
|
|
}
|
|
|
|
func (t *Tensor) Bytes() (data []byte) {
|
|
if t.sync != nil {
|
|
data = make([]byte, C.ggml_nbytes(t.t))
|
|
|
|
t.sync()
|
|
C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
func (t *Tensor) Floats() (data []float32) {
|
|
if t.sync != nil {
|
|
data = make([]float32, C.ggml_nelements(t.t))
|
|
|
|
t.sync()
|
|
C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
func (t *Tensor) DType() ml.DType {
|
|
switch t.t._type {
|
|
case C.GGML_TYPE_F32:
|
|
return ml.DTypeF32
|
|
case C.GGML_TYPE_I32:
|
|
return ml.DTypeI32
|
|
default:
|
|
return ml.DTypeOther
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
return &Tensor{
|
|
t: C.ggml_add(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
|
|
if len(s) > 0 {
|
|
return t.Concat(ctx, s[0].Stack(ctx, dim, s[1:]...), dim)
|
|
}
|
|
|
|
return t
|
|
}
|
|
|
|
func (t *Tensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
|
|
return &Tensor{
|
|
t: C.ggml_concat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(dim)),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Contiguous(ctx ml.Context) ml.Tensor {
|
|
return &Tensor{
|
|
t: C.ggml_cont(ctx.(*Context).ctx, t.t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
return &Tensor{
|
|
t: C.ggml_mul(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
return &Tensor{
|
|
t: C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
mul := C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t)
|
|
C.ggml_mul_mat_set_prec(mul, C.GGML_PREC_F32)
|
|
|
|
return &Tensor{
|
|
t: mul,
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
|
|
tt := (&Tensor{t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
|
|
if b != nil {
|
|
tt = tt.Add(ctx, b)
|
|
}
|
|
|
|
return tt
|
|
}
|
|
|
|
func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor {
|
|
return (&Tensor{t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
|
|
}
|
|
|
|
func (t *Tensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
|
|
if len(shape) != 4 {
|
|
panic("expected 4 dimensions")
|
|
}
|
|
|
|
return &Tensor{
|
|
t: C.ggml_pad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
|
|
if len(shape) != 4 {
|
|
panic("expected 4 dimensions")
|
|
}
|
|
|
|
return &Tensor{
|
|
t: C.ggml_permute(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
return &Tensor{
|
|
t: C.ggml_get_rows(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
return &Tensor{
|
|
t: C.ggml_cpy(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
|
|
switch len(shape) {
|
|
case 1:
|
|
return &Tensor{
|
|
t: C.ggml_reshape_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
|
|
}
|
|
case 2:
|
|
return &Tensor{
|
|
t: C.ggml_reshape_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
|
|
}
|
|
case 3:
|
|
return &Tensor{
|
|
t: C.ggml_reshape_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
|
|
}
|
|
case 4:
|
|
return &Tensor{
|
|
t: C.ggml_reshape_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
|
|
}
|
|
default:
|
|
panic("unsupported number of dimensions")
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor {
|
|
return &Tensor{
|
|
t: C.ggml_scale(ctx.(*Context).ctx, t.t, (C.float)(s)),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
|
|
return &Tensor{
|
|
t: C.ggml_soft_max(ctx.(*Context).ctx, t.t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
|
|
return &Tensor{
|
|
t: C.ggml_tanh_inplace(ctx.(*Context).ctx, t.t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Unpad(ctx ml.Context, shape ...int) ml.Tensor {
|
|
if len(shape) != 4 {
|
|
panic("expected 4 dimensions")
|
|
}
|
|
|
|
return &Tensor{
|
|
t: C.ggml_unpad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
|
|
switch len(shape) {
|
|
case 1:
|
|
return &Tensor{
|
|
t: C.ggml_view_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.size_t(offset)),
|
|
}
|
|
case 3:
|
|
return &Tensor{
|
|
t: C.ggml_view_2d(ctx.(*Context).ctx, t.t,
|
|
C.int64_t(shape[0]), C.int64_t(shape[2]),
|
|
C.size_t(shape[1]),
|
|
C.size_t(offset)),
|
|
}
|
|
case 5:
|
|
return &Tensor{
|
|
t: C.ggml_view_3d(ctx.(*Context).ctx, t.t,
|
|
C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]),
|
|
C.size_t(shape[1]), C.size_t(shape[3]),
|
|
C.size_t(offset)),
|
|
}
|
|
case 7:
|
|
return &Tensor{
|
|
t: C.ggml_view_4d(ctx.(*Context).ctx, t.t,
|
|
C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.int64_t(shape[6]),
|
|
C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(shape[5]),
|
|
C.size_t(offset)),
|
|
}
|
|
default:
|
|
panic("unsupported number of dimensions")
|
|
}
|
|
}
|
|
|
|
const (
|
|
ropeTypeNorm C.int = iota
|
|
)
|
|
|
|
func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim uint32, ropeBase, ropeScale float32) ml.Tensor {
|
|
if ropeFactors == nil {
|
|
ropeFactors = &Tensor{}
|
|
}
|
|
|
|
return &Tensor{
|
|
t: C.ggml_rope_ext(
|
|
ctx.(*Context).ctx, t.t, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
|
|
C.int(ropeDim),
|
|
131072, // YaRN n_ctx_train
|
|
ropeTypeNorm, // ROPE_TYPE_NORM
|
|
C.float(ropeBase),
|
|
C.float(ropeScale),
|
|
0., // YaRN ext_factor
|
|
1., // YaRN attn_factor
|
|
32., // YaRN beta_fast
|
|
1., // YaRN beta_slow
|
|
),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) GELU(ctx ml.Context) ml.Tensor {
|
|
return &Tensor{
|
|
t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) SILU(ctx ml.Context) ml.Tensor {
|
|
return &Tensor{
|
|
t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
|
|
return &Tensor{
|
|
t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
|
|
}
|
|
}
|