mirror of
https://github.com/ollama/ollama.git
synced 2025-07-02 14:01:49 +02:00
169 lines
4.8 KiB
Go
169 lines
4.8 KiB
Go
package gemma3
|
|
|
|
import (
|
|
"bytes"
|
|
"encoding/binary"
|
|
"hash/fnv"
|
|
"image"
|
|
"slices"
|
|
|
|
"github.com/ollama/ollama/kvcache"
|
|
"github.com/ollama/ollama/ml"
|
|
"github.com/ollama/ollama/ml/nn"
|
|
"github.com/ollama/ollama/model"
|
|
"github.com/ollama/ollama/model/input"
|
|
)
|
|
|
|
type Model struct {
|
|
model.Base
|
|
model.SentencePieceModel
|
|
|
|
*VisionModel `gguf:"v,vision"`
|
|
*TextModel
|
|
|
|
*MultiModalProjector `gguf:"mm"`
|
|
|
|
ImageProcessor
|
|
}
|
|
|
|
var _ model.MultimodalProcessor = (*Model)(nil)
|
|
|
|
type MultiModalProjector struct {
|
|
SoftEmbNorm *nn.RMSNorm `gguf:"mm_soft_emb_norm"`
|
|
InputProjection *nn.Linear `gguf:"mm_input_projection"`
|
|
}
|
|
|
|
func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, eps float32) ml.Tensor {
|
|
visionOutputs = p.SoftEmbNorm.Forward(ctx, visionOutputs, eps)
|
|
|
|
// TODO: inputProjection must be transposed since they're incompatible with visionOutputs
|
|
visionOutputs = p.InputProjection.Weight.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx).Mulmat(ctx, visionOutputs)
|
|
return visionOutputs
|
|
}
|
|
|
|
func New(c ml.Config) (model.Model, error) {
|
|
m := Model{
|
|
SentencePieceModel: model.NewSentencePieceModel(
|
|
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
|
|
&model.Vocabulary{
|
|
Values: c.Strings("tokenizer.ggml.tokens"),
|
|
Scores: c.Floats("tokenizer.ggml.scores"),
|
|
Types: c.Uints("tokenizer.ggml.token_type"),
|
|
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
|
|
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
|
|
EOS: int32(1),
|
|
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
|
|
EOT: int32(106),
|
|
AddEOT: c.Bool("tokenizer.ggml.add_eot_token", false),
|
|
},
|
|
),
|
|
ImageProcessor: newImageProcessor(c),
|
|
VisionModel: newVisionModel(c),
|
|
TextModel: newTextModel(c),
|
|
}
|
|
|
|
slidingWindowLen := int32(c.Uint("attention.sliding_window"))
|
|
m.Cache = kvcache.NewWrapperCache(kvcache.NewSWACache(slidingWindowLen, m.Shift), kvcache.NewCausalCache(m.Shift))
|
|
|
|
return &m, nil
|
|
}
|
|
|
|
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
|
|
image, _, err := image.Decode(bytes.NewReader(multimodalData))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
f32s, err := m.ImageProcessor.ProcessImage(image)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
pixelValues, err := ctx.Input().FromFloatSlice(f32s,
|
|
m.ImageProcessor.imageSize,
|
|
m.ImageProcessor.imageSize,
|
|
m.ImageProcessor.numChannels,
|
|
)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
visionOutputs := m.VisionModel.Forward(ctx, pixelValues)
|
|
visionOutputs = visionOutputs.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
|
|
patchesPerImage := m.ImageProcessor.imageSize / m.ImageProcessor.patchSize
|
|
kernelSize := patchesPerImage * patchesPerImage / 256
|
|
visionOutputs = visionOutputs.AvgPool1D(ctx, kernelSize, kernelSize, 0)
|
|
|
|
visionOutputs = visionOutputs.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
|
|
visionOutputs = m.MultiModalProjector.Forward(ctx, visionOutputs, m.VisionModel.eps)
|
|
return visionOutputs, nil
|
|
}
|
|
|
|
func (m *Model) PostTokenize(ctx ml.Context, inputs []input.Input) ([]input.Input, error) {
|
|
var images []input.Input
|
|
fnvHash := fnv.New64a()
|
|
|
|
for i := range inputs {
|
|
if inputs[i].Multimodal == nil {
|
|
for j := range images {
|
|
if j == 0 {
|
|
inputs[i].Multimodal = images[j].Multimodal
|
|
inputs[i].MultimodalHash = images[j].MultimodalHash
|
|
} else {
|
|
inputs[i].Multimodal = inputs[i].Multimodal.(ml.Tensor).Concat(ctx, images[j].Multimodal.(ml.Tensor), 3)
|
|
fnvHash.Reset()
|
|
binary.Write(fnvHash, binary.NativeEndian, inputs[i].MultimodalHash)
|
|
binary.Write(fnvHash, binary.NativeEndian, images[j].MultimodalHash)
|
|
inputs[i].MultimodalHash = fnvHash.Sum64()
|
|
}
|
|
}
|
|
|
|
images = nil
|
|
} else {
|
|
images = append(images, inputs[i])
|
|
inputs[i].Token = -1
|
|
}
|
|
}
|
|
|
|
for i := range inputs {
|
|
if inputs[i].Token == -1 {
|
|
imageInputs := []input.Input{
|
|
{Token: 108}, // "\n\n"
|
|
{Token: 255999}, // "<start_of_image>""
|
|
}
|
|
|
|
// pad inputs with placeholders for image embeddings
|
|
imageInputs = append(imageInputs, slices.Repeat([]input.Input{{Token: 0}}, 256)...)
|
|
// <end_of_image>
|
|
imageInputs = append(imageInputs, input.Input{Token: 256000})
|
|
|
|
inputs = append(inputs[:i], append(imageInputs, inputs[i+1:]...)...)
|
|
}
|
|
}
|
|
|
|
return inputs, nil
|
|
}
|
|
|
|
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
|
|
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return m.TextModel.Forward(ctx, inputs, positions, outputs, opts.Multimodal, m.Cache), nil
|
|
}
|
|
|
|
func init() {
|
|
model.Register("gemma3", New)
|
|
}
|