mirror of
https://github.com/ollama/ollama.git
synced 2025-07-29 21:55:55 +02:00
We don't check the return status after computing the graph, which can silently lead to bad outputs if we try to keep going and future computation succeeds. This appears to happens in certain cases on Apple M2 devices. Fixes #11070
1278 lines
33 KiB
Go
1278 lines
33 KiB
Go
package ggml
|
|
|
|
// #cgo CPPFLAGS: -I${SRCDIR}/ggml/include
|
|
// #include <stdlib.h>
|
|
// #include <stdint.h>
|
|
// #include "ggml.h"
|
|
// #include "ggml-cpu.h"
|
|
// #include "ggml-backend.h"
|
|
import "C"
|
|
|
|
import (
|
|
"context"
|
|
"fmt"
|
|
"io"
|
|
"log/slog"
|
|
"maps"
|
|
"os"
|
|
"runtime"
|
|
"slices"
|
|
"strconv"
|
|
"strings"
|
|
"sync/atomic"
|
|
"unicode"
|
|
"unsafe"
|
|
|
|
"github.com/ollama/ollama/format"
|
|
"github.com/ollama/ollama/fs"
|
|
fsggml "github.com/ollama/ollama/fs/ggml"
|
|
"github.com/ollama/ollama/logutil"
|
|
"github.com/ollama/ollama/ml"
|
|
ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
|
|
"github.com/ollama/ollama/ml/nn/rope"
|
|
"golang.org/x/sync/errgroup"
|
|
)
|
|
|
|
func devices() []*C.struct_ggml_backend_device {
|
|
ggml.OnceLoad()
|
|
ds := make([]*C.struct_ggml_backend_device, C.ggml_backend_dev_count())
|
|
for i := range ds {
|
|
ds[i] = C.ggml_backend_dev_get(C.size_t(i))
|
|
}
|
|
|
|
return ds
|
|
}
|
|
|
|
type Backend struct {
|
|
// modelPath is the location of the model data
|
|
modelPath string
|
|
|
|
meta *fsggml.GGML
|
|
|
|
// tensorLoadTargets maps from the name of the tensor in the file
|
|
// to the name that is used by the model definition
|
|
tensorLoadTargets map[string][]string
|
|
|
|
sched *C.struct_ggml_backend_sched
|
|
schedBackends []*C.struct_ggml_backend
|
|
schedBufts []*C.struct_ggml_backend_buffer_type
|
|
|
|
tensors map[string]*C.struct_ggml_tensor
|
|
|
|
// input is the backend used for inputs
|
|
input *C.struct_ggml_backend_buffer_type
|
|
|
|
// layers is the backend used for repeating layers
|
|
layers map[int]*C.struct_ggml_backend_buffer_type
|
|
|
|
// requiredMemory is the cumulative memory allocations needed by the backend
|
|
requiredMemory *ml.BackendMemory
|
|
|
|
// btDeviceMemory maps from a buffer type to the memory allocations associated with that device
|
|
btDeviceMemory map[*C.struct_ggml_backend_buffer_type]*ml.DeviceMemory
|
|
|
|
flashAttention bool
|
|
|
|
// maxGraphNodes is the maximum allowed number of graph nodes in this scheduler
|
|
maxGraphNodes int
|
|
}
|
|
|
|
func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
|
|
r, err := os.Open(modelPath)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
defer r.Close()
|
|
|
|
meta, err := fsggml.Decode(r, -1)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
slog.Info(
|
|
"",
|
|
"architecture", meta.KV().Architecture(),
|
|
"file_type", meta.KV().FileType(),
|
|
"name", meta.KV().String("general.name"),
|
|
"description", meta.KV().String("general.description"),
|
|
"num_tensors", len(meta.Tensors().Items()),
|
|
"num_key_values", len(meta.KV()),
|
|
)
|
|
|
|
var requiredMemory ml.BackendMemory
|
|
btDeviceMemory := make(map[*C.struct_ggml_backend_buffer_type]*ml.DeviceMemory)
|
|
|
|
type deviceBufferType struct {
|
|
d *C.struct_ggml_backend_device
|
|
bts []*C.struct_ggml_backend_buffer_type
|
|
}
|
|
|
|
var cpus, accels, gpus []*C.struct_ggml_backend_device
|
|
for _, d := range devices() {
|
|
switch C.ggml_backend_dev_type(d) {
|
|
case C.GGML_BACKEND_DEVICE_TYPE_CPU:
|
|
if len(cpus) == 0 {
|
|
// only the first cpu device should be used
|
|
cpus = append(cpus, d)
|
|
}
|
|
case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
|
|
accels = append(accels, d)
|
|
case C.GGML_BACKEND_DEVICE_TYPE_GPU:
|
|
gpus = append(gpus, d)
|
|
}
|
|
}
|
|
|
|
blocks := int(meta.KV().BlockCount())
|
|
|
|
// create list of buffer types for the cpu
|
|
cpuDeviceBufferType := deviceBufferType{d: C.ggml_backend_dev_by_type(C.GGML_BACKEND_DEVICE_TYPE_CPU)}
|
|
for _, d := range append(accels, append(gpus, cpus...)...) {
|
|
switch C.ggml_backend_dev_type(d) {
|
|
case C.GGML_BACKEND_DEVICE_TYPE_CPU,
|
|
C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
|
|
cpuDeviceBufferType.bts = append(cpuDeviceBufferType.bts, C.ggml_backend_dev_buffer_type(d))
|
|
btDeviceMemory[C.ggml_backend_dev_buffer_type(d)] = &requiredMemory.CPU
|
|
}
|
|
}
|
|
|
|
requiredMemory.CPU.Name = C.GoString(C.ggml_backend_dev_name(cpuDeviceBufferType.d))
|
|
var props C.struct_ggml_backend_dev_props
|
|
C.ggml_backend_dev_get_props(cpuDeviceBufferType.d, &props)
|
|
requiredMemory.CPU.UUID = C.GoString(props.uuid)
|
|
requiredMemory.CPU.Weights = make([]ml.Memory, blocks+1)
|
|
requiredMemory.CPU.Cache = make([]ml.Memory, blocks+1)
|
|
|
|
// create list of buffer types for each gpu
|
|
var gpuDeviceBufferTypes []deviceBufferType
|
|
requiredMemory.GPUs = make([]ml.DeviceMemory, len(gpus))
|
|
for i, d := range gpus {
|
|
bt := C.ggml_backend_dev_buffer_type(d)
|
|
gpuDeviceBufferTypes = append(gpuDeviceBufferTypes, deviceBufferType{
|
|
d: d,
|
|
bts: append([]*C.struct_ggml_backend_buffer_type{bt}, cpuDeviceBufferType.bts...),
|
|
})
|
|
btDeviceMemory[bt] = &requiredMemory.GPUs[i]
|
|
requiredMemory.GPUs[i].Name = C.GoString(C.ggml_backend_dev_name(d))
|
|
var props C.struct_ggml_backend_dev_props
|
|
C.ggml_backend_dev_get_props(d, &props)
|
|
requiredMemory.GPUs[i].UUID = C.GoString(props.uuid)
|
|
requiredMemory.GPUs[i].Weights = make([]ml.Memory, blocks+1)
|
|
requiredMemory.GPUs[i].Cache = make([]ml.Memory, blocks+1)
|
|
}
|
|
|
|
useDefaultSplit := true
|
|
for _, s := range params.TensorSplit {
|
|
if s != 0 {
|
|
useDefaultSplit = false
|
|
break
|
|
}
|
|
}
|
|
|
|
// calculate splits
|
|
splits := make([]float32, len(gpus))
|
|
if useDefaultSplit {
|
|
// default: split on free memory
|
|
for i := range splits {
|
|
var free, total C.size_t
|
|
C.ggml_backend_dev_memory(gpus[i], &free, &total)
|
|
splits[i] = float32(free)
|
|
}
|
|
} else {
|
|
splits = params.TensorSplit
|
|
}
|
|
|
|
var sum float32
|
|
// cumulative sum of all splits
|
|
for i := range splits {
|
|
sum += splits[i]
|
|
splits[i] = sum
|
|
}
|
|
|
|
// normalize splits
|
|
for i := range splits {
|
|
splits[i] /= sum
|
|
}
|
|
|
|
// inputs always use cpu
|
|
input := cpuDeviceBufferType
|
|
|
|
// define a range of gpu layers. anything outside of this range is assigned to the cpu
|
|
gpuRangeStart := max(0, blocks-params.NumGPULayers)
|
|
gpuRangeStop := min(gpuRangeStart+params.NumGPULayers, blocks+1)
|
|
assignLayer := func(i int) deviceBufferType {
|
|
if i < gpuRangeStart || i >= gpuRangeStop {
|
|
return cpuDeviceBufferType
|
|
}
|
|
|
|
index := slices.IndexFunc(splits, func(f float32) bool { return float32(i-gpuRangeStart)/float32(gpuRangeStop-gpuRangeStart) < f })
|
|
if index < 0 || index >= len(gpuDeviceBufferTypes) {
|
|
return cpuDeviceBufferType
|
|
}
|
|
|
|
return gpuDeviceBufferTypes[index]
|
|
}
|
|
|
|
// repeating layers are assigned based on their index in reverse order, e.g. i / (block_count + 1)
|
|
layers := make([]deviceBufferType, blocks)
|
|
for i := range layers {
|
|
layers[i] = assignLayer(i)
|
|
}
|
|
|
|
// outputs are assigned iff allowed by splits and configured number of gpu layers
|
|
output := assignLayer(blocks)
|
|
|
|
maxTensors := len(meta.Tensors().Items())
|
|
maxTensors += 1
|
|
// each layer has at most 2 extra tensors for rope operations
|
|
maxTensors += blocks * 2
|
|
|
|
type tensor struct {
|
|
source *fsggml.Tensor
|
|
target string
|
|
}
|
|
|
|
// some tensors are mapped to different names so keep a list
|
|
targets := make(map[string][]string)
|
|
|
|
// contexts are shared by tensors of the same buffer type
|
|
ctxs := make(map[*C.struct_ggml_backend_buffer_type]*C.struct_ggml_context)
|
|
createTensor := func(t tensor, bts []*C.struct_ggml_backend_buffer_type, layer int) *C.struct_ggml_tensor {
|
|
for _, bt := range bts {
|
|
if _, ok := ctxs[bt]; !ok {
|
|
ctxs[bt] = C.ggml_init(C.struct_ggml_init_params{
|
|
mem_size: C.ggml_tensor_overhead() * C.size_t(maxTensors),
|
|
no_alloc: true,
|
|
})
|
|
}
|
|
|
|
targets[t.source.Name] = append(targets[t.source.Name], t.target)
|
|
|
|
name := t.source.Name
|
|
if t.target != "" {
|
|
name = t.target
|
|
}
|
|
|
|
cname := C.CString(name)
|
|
defer C.free(unsafe.Pointer(cname))
|
|
if tt := C.ggml_get_tensor(ctxs[bt], cname); tt != nil {
|
|
return tt
|
|
}
|
|
|
|
tt := C.ggml_new_tensor(ctxs[bt], t.source.Kind, C.int(len(t.source.Shape)), (*C.int64_t)(unsafe.Pointer(&t.source.Shape[0])))
|
|
C.ggml_set_name(tt, cname)
|
|
|
|
slog.Log(context.TODO(), logutil.LevelTrace, "created tensor", "name", name, "shape", t.source.Shape, "dtype", t.source.Kind, "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
|
|
|
|
size := pad(C.ggml_backend_buft_get_alloc_size(bt, tt), C.ggml_backend_buft_get_alignment(bt))
|
|
if layer == -1 {
|
|
// Assume that InputWeights can be allocated - they're always in system memory and can't be moved in any case
|
|
requiredMemory.InputWeights.Status = ml.Allocated
|
|
requiredMemory.InputWeights.Size += uint64(size)
|
|
} else {
|
|
btDeviceMemory[bt].Weights[layer].Size += uint64(size)
|
|
}
|
|
|
|
//nolint:staticcheck // TODO: check if buffer type supports this tensor
|
|
return tt
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
contains := func(s string, parts ...string) bool {
|
|
split := strings.Split(s, ".")
|
|
for _, part := range parts {
|
|
if slices.Contains(split, part) {
|
|
return true
|
|
}
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
for _, t := range meta.Tensors().Items() {
|
|
switch {
|
|
case contains(t.Name, "position_embd", "token_embd", "token_norm_embd", "token_types"):
|
|
createTensor(tensor{source: t}, input.bts, -1)
|
|
if _, ok := meta.Tensors().GroupLayers()["output"]; !ok && t.Name == "token_embd.weight" {
|
|
createTensor(tensor{source: t, target: "output.weight"}, output.bts, blocks)
|
|
}
|
|
case contains(t.Name, "cls", "output", "output_norm"):
|
|
createTensor(tensor{source: t}, output.bts, blocks)
|
|
case strings.HasPrefix(t.Name, "v.") || strings.HasPrefix(t.Name, "mm."):
|
|
// TODO: assign vision tensors to the gpu if possible
|
|
createTensor(tensor{source: t}, output.bts, blocks)
|
|
case contains(t.Name, "rope_freqs", "rope_factors_long", "rope_factors_short"):
|
|
// these tensors should be repeated per layer
|
|
for i, layer := range layers {
|
|
createTensor(tensor{
|
|
source: t,
|
|
target: "blk." + strconv.Itoa(i) + "." + t.Name,
|
|
}, layer.bts, i)
|
|
}
|
|
default:
|
|
layerIndex := -1
|
|
if fields := strings.FieldsFunc(t.Name, func(r rune) bool { return !unicode.IsNumber(r) }); len(fields) > 0 {
|
|
if i, err := strconv.Atoi(fields[0]); err == nil {
|
|
layerIndex = i
|
|
}
|
|
}
|
|
|
|
if layerIndex >= 0 {
|
|
createTensor(tensor{source: t}, layers[layerIndex].bts, layerIndex)
|
|
} else {
|
|
// load all other tensors on the cpu
|
|
createTensor(tensor{source: t}, input.bts, -1)
|
|
}
|
|
}
|
|
}
|
|
|
|
// allocate buffers for each context
|
|
bbs := make(map[*C.struct_ggml_context]*C.struct_ggml_backend_buffer, len(ctxs))
|
|
for bt, c := range ctxs {
|
|
if C.ggml_get_first_tensor(c) == nil {
|
|
continue
|
|
}
|
|
|
|
b := C.ggml_backend_alloc_ctx_tensors_from_buft(c, bt)
|
|
for i := range btDeviceMemory[bt].Weights {
|
|
if btDeviceMemory[bt].Weights[i].Size != 0 {
|
|
if b != nil {
|
|
btDeviceMemory[bt].Weights[i].Status = ml.Allocated
|
|
} else {
|
|
btDeviceMemory[bt].Weights[i].Status = ml.Failed
|
|
}
|
|
}
|
|
}
|
|
|
|
if b == nil {
|
|
panic(ml.ErrNoMem{BackendMemory: requiredMemory})
|
|
}
|
|
|
|
C.ggml_backend_buffer_set_usage(b, C.GGML_BACKEND_BUFFER_USAGE_WEIGHTS)
|
|
bbs[c] = b
|
|
}
|
|
|
|
for bs := range maps.Values(bbs) {
|
|
slog.Info("model weights", "buffer", C.GoString(C.ggml_backend_buffer_name(bs)), "size", format.HumanBytes2(uint64(C.ggml_backend_buffer_get_size(bs))))
|
|
}
|
|
|
|
// map tensor names to tensors for easy lookup later
|
|
tensors := make(map[string]*C.struct_ggml_tensor)
|
|
for _, c := range ctxs {
|
|
for t := C.ggml_get_first_tensor(c); t != nil; t = C.ggml_get_next_tensor(c, t) {
|
|
tensors[C.GoString(C.ggml_get_name(t))] = t
|
|
}
|
|
}
|
|
|
|
// map devices to backend buffer types so new tensors can be assigned to the correct device
|
|
deviceBufferTypes := make(map[*C.struct_ggml_backend_device]*C.struct_ggml_backend_buffer_type)
|
|
|
|
// create backends and buffer types used for the compute graph scheduler
|
|
var schedBackends []*C.struct_ggml_backend
|
|
var schedBufts []*C.struct_ggml_backend_buffer_type
|
|
for _, d := range append(gpus, append(accels, cpus...)...) {
|
|
b := C.ggml_backend_dev_init(d, nil)
|
|
bt := C.ggml_backend_get_default_buffer_type(b)
|
|
|
|
deviceBufferTypes[d] = bt
|
|
|
|
schedBackends = append(schedBackends, b)
|
|
schedBufts = append(schedBufts, bt)
|
|
|
|
if C.ggml_backend_is_cpu(b) {
|
|
// set number of threads for cpu backend
|
|
C.ggml_backend_cpu_set_n_threads(b, C.int(Threads(params.NumThreads)))
|
|
}
|
|
}
|
|
|
|
maxGraphNodes := max(8192, len(meta.Tensors().Items())*5)
|
|
return &Backend{
|
|
modelPath: modelPath,
|
|
flashAttention: params.FlashAttention,
|
|
meta: meta,
|
|
tensorLoadTargets: targets,
|
|
tensors: tensors,
|
|
sched: C.ggml_backend_sched_new(
|
|
(*C.ggml_backend_t)(unsafe.Pointer(&schedBackends[0])),
|
|
(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&schedBufts[0])),
|
|
C.int(len(schedBackends)),
|
|
C.size_t(maxGraphNodes),
|
|
C._Bool(len(gpus) > 1 && slices.Contains(gpus, output.d)),
|
|
C._Bool(false),
|
|
),
|
|
schedBackends: schedBackends,
|
|
schedBufts: schedBufts,
|
|
input: deviceBufferTypes[input.d],
|
|
layers: func() map[int]*C.struct_ggml_backend_buffer_type {
|
|
m := make(map[int]*C.struct_ggml_backend_buffer_type)
|
|
for i, layer := range layers {
|
|
m[i] = deviceBufferTypes[layer.d]
|
|
}
|
|
return m
|
|
}(),
|
|
requiredMemory: &requiredMemory,
|
|
btDeviceMemory: btDeviceMemory,
|
|
maxGraphNodes: maxGraphNodes,
|
|
}, nil
|
|
}
|
|
|
|
func init() {
|
|
ml.RegisterBackend("ggml", New)
|
|
}
|
|
|
|
func (b *Backend) Load(ctx context.Context, progress func(float32)) error {
|
|
var doneBytes atomic.Uint64
|
|
totalBytes := uint64(b.meta.Length) - b.meta.Tensors().Offset
|
|
|
|
g, ctx := errgroup.WithContext(ctx)
|
|
g.SetLimit(runtime.GOMAXPROCS(0))
|
|
for _, t := range b.meta.Tensors().Items() {
|
|
t := t
|
|
g.Go(func() error {
|
|
tts := make([]*C.struct_ggml_tensor, max(1, len(b.tensorLoadTargets[t.Name])))
|
|
for i := range tts {
|
|
target := b.tensorLoadTargets[t.Name][i]
|
|
if target == "" {
|
|
target = t.Name
|
|
}
|
|
|
|
tt, ok := b.tensors[target]
|
|
if !ok {
|
|
return fmt.Errorf("unassigned tensor: %s", t.Name)
|
|
}
|
|
|
|
tts[i] = tt
|
|
}
|
|
|
|
// Create a new FD for each goroutine so that each FD is read sequentially, rather than
|
|
// seeking around within an FD shared between all goroutines.
|
|
file, err := os.Open(b.modelPath)
|
|
if err != nil {
|
|
slog.Warn("file open error", "file", b.modelPath, "error", err)
|
|
return err
|
|
}
|
|
defer file.Close()
|
|
sr := io.NewSectionReader(file, int64(b.meta.Tensors().Offset+t.Offset), int64(t.Size()))
|
|
bts := make([]byte, 128*format.KibiByte)
|
|
|
|
var s uint64
|
|
for s < t.Size() {
|
|
// Stop if either the parent context has been canceled or if any of the other tensors returned an error
|
|
if err := ctx.Err(); err != nil {
|
|
return err
|
|
}
|
|
|
|
n, err := io.ReadFull(sr, bts[:min(len(bts), int(t.Size()-s))])
|
|
if err != nil {
|
|
slog.Warn("file read error", "file", b.modelPath, "error", err)
|
|
return err
|
|
}
|
|
|
|
for _, tt := range tts {
|
|
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), C.size_t(s), C.size_t(n))
|
|
}
|
|
|
|
s += uint64(n)
|
|
|
|
if progress != nil {
|
|
done := doneBytes.Add(uint64(n))
|
|
progress(float32(done) / float32(totalBytes))
|
|
}
|
|
}
|
|
|
|
return nil
|
|
})
|
|
}
|
|
|
|
if err := g.Wait(); err != nil {
|
|
return err
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func (b *Backend) BackendMemory() ml.BackendMemory {
|
|
return *b.requiredMemory
|
|
}
|
|
|
|
func (b *Backend) Config() fs.Config {
|
|
return b.meta.KV()
|
|
}
|
|
|
|
func (b *Backend) Get(name string) ml.Tensor {
|
|
if t, ok := b.tensors[name]; ok {
|
|
return &Tensor{b: b, t: t}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func (b *Backend) NewContext() ml.Context {
|
|
return b.NewContextSize(b.maxGraphNodes)
|
|
}
|
|
|
|
func (b *Backend) NewContextSize(n int) ml.Context {
|
|
if n > b.maxGraphNodes {
|
|
panic(fmt.Errorf("requested number of graph nodes (%v) for new context exceeds maximum (%v)", n, b.maxGraphNodes))
|
|
}
|
|
|
|
var allocatedBuffers []*C.struct_ggml_backend_buffer
|
|
|
|
return &Context{
|
|
b: b,
|
|
maxGraphNodes: n,
|
|
ctx: C.ggml_init(C.struct_ggml_init_params{
|
|
mem_size: C.size_t(n)*C.ggml_tensor_overhead() + C.ggml_graph_overhead_custom(C.size_t(n), false),
|
|
no_alloc: true,
|
|
}),
|
|
allocatedBuffers: &allocatedBuffers,
|
|
layer: -1,
|
|
}
|
|
}
|
|
|
|
func (b *Backend) CacheConfig() ml.CacheConfig {
|
|
if b.flashAttention {
|
|
return ml.CacheConfig{CachePadding: 256, MaskDType: ml.DTypeF16, MaskBatchPadding: C.GGML_KQ_MASK_PAD}
|
|
} else {
|
|
return ml.CacheConfig{CachePadding: 32, PermutedV: true}
|
|
}
|
|
}
|
|
|
|
type Context struct {
|
|
b *Backend
|
|
|
|
ctx *C.struct_ggml_context
|
|
graph *C.struct_ggml_cgraph
|
|
|
|
// buft is the buffer type used for new tensors
|
|
buft *C.struct_ggml_backend_buffer_type
|
|
|
|
// allocatedBuffers are buffers for tensors that we have allocated in this context
|
|
// so that we can free them when we close the context
|
|
allocatedBuffers *[]*C.struct_ggml_backend_buffer
|
|
|
|
// maxGraphNodes is the maximum allowed number of graph nodes in this context
|
|
maxGraphNodes int
|
|
|
|
// layer is the graph layer that this context is allocating for - assumed to be cache
|
|
layer int
|
|
}
|
|
|
|
func (c *Context) Input() ml.Context {
|
|
if c.b.input != nil {
|
|
return &Context{
|
|
b: c.b,
|
|
ctx: c.ctx,
|
|
buft: c.b.input,
|
|
allocatedBuffers: c.allocatedBuffers,
|
|
maxGraphNodes: c.maxGraphNodes,
|
|
layer: -1,
|
|
}
|
|
}
|
|
|
|
return c
|
|
}
|
|
|
|
func (c *Context) Layer(i int) ml.Context {
|
|
if buft, ok := c.b.layers[i]; ok {
|
|
return &Context{
|
|
b: c.b,
|
|
ctx: c.ctx,
|
|
buft: buft,
|
|
allocatedBuffers: c.allocatedBuffers,
|
|
maxGraphNodes: c.maxGraphNodes,
|
|
layer: i,
|
|
}
|
|
}
|
|
|
|
return c
|
|
}
|
|
|
|
func (c *Context) Forward(tensors ...ml.Tensor) ml.Context {
|
|
if c.graph == nil {
|
|
c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.maxGraphNodes), false)
|
|
}
|
|
|
|
for _, tensor := range tensors {
|
|
C.ggml_build_forward_expand(c.graph, tensor.(*Tensor).t)
|
|
}
|
|
|
|
return c
|
|
}
|
|
|
|
func (c *Context) Compute(tensors ...ml.Tensor) {
|
|
if status := C.ggml_backend_sched_graph_compute_async(c.b.sched, c.graph); status != C.GGML_STATUS_SUCCESS {
|
|
panic(fmt.Errorf("error computing ggml graph: %v", status))
|
|
}
|
|
C.ggml_backend_sched_reset(c.b.sched)
|
|
|
|
needSync := true
|
|
sync := func() {
|
|
if needSync {
|
|
C.ggml_backend_sched_synchronize(c.b.sched)
|
|
needSync = false
|
|
}
|
|
}
|
|
|
|
for _, t := range tensors {
|
|
if C.ggml_nbytes(t.(*Tensor).t) > 0 {
|
|
t.(*Tensor).sync = sync
|
|
}
|
|
}
|
|
}
|
|
|
|
func (c *Context) Reserve() {
|
|
reserved := C.ggml_backend_sched_reserve(c.b.sched, c.graph)
|
|
|
|
slog.Debug("compute graph", "nodes", C.ggml_graph_n_nodes(c.graph), "splits", C.ggml_backend_sched_get_n_splits(c.b.sched))
|
|
|
|
// Reserve may get called multiple times for different graphs - we just want the last run, which will contain the max allocations
|
|
for _, bt := range c.b.schedBufts {
|
|
c.b.btDeviceMemory[bt].Graph = ml.Memory{}
|
|
}
|
|
|
|
for i := range c.b.schedBackends {
|
|
bufferStatus := C.ggml_backend_sched_get_attempted_buffer_size(c.b.sched, c.b.schedBackends[i])
|
|
|
|
graph := &c.b.btDeviceMemory[c.b.schedBufts[i]].Graph
|
|
graph.Size += uint64(bufferStatus.size)
|
|
if bufferStatus.allocated && graph.Status != ml.Failed {
|
|
graph.Status = ml.Allocated
|
|
} else {
|
|
graph.Status = ml.Failed
|
|
}
|
|
|
|
slog.Info("compute graph", "backend", C.GoString(C.ggml_backend_name(c.b.schedBackends[i])), "buffer_type", C.GoString(C.ggml_backend_buft_name(c.b.schedBufts[i])),
|
|
"size", format.HumanBytes2(uint64(bufferStatus.size)))
|
|
}
|
|
|
|
if !reserved {
|
|
panic(ml.ErrNoMem{BackendMemory: *c.b.requiredMemory})
|
|
}
|
|
}
|
|
|
|
func (c *Context) MaxGraphNodes() int {
|
|
return c.maxGraphNodes
|
|
}
|
|
|
|
func shapeToGGML(shape []int) *C.int64_t {
|
|
sh := make([]C.int64_t, len(shape))
|
|
for i, s := range shape {
|
|
sh[i] = C.int64_t(s)
|
|
}
|
|
|
|
return &sh[0]
|
|
}
|
|
|
|
func pad(length, pad C.size_t) C.size_t {
|
|
return ((length + pad - 1) / pad) * pad
|
|
}
|
|
|
|
func (c *Context) newTensor(dtype ml.DType, shape []int) ml.Tensor {
|
|
if c.buft == nil {
|
|
panic("set Input or Layer before creating tensors")
|
|
}
|
|
|
|
var cdtype uint32
|
|
switch dtype {
|
|
case ml.DTypeF32:
|
|
cdtype = C.GGML_TYPE_F32
|
|
case ml.DTypeF16:
|
|
cdtype = C.GGML_TYPE_F16
|
|
case ml.DTypeQ80:
|
|
cdtype = C.GGML_TYPE_Q8_0
|
|
case ml.DTypeQ40:
|
|
cdtype = C.GGML_TYPE_Q4_0
|
|
case ml.DTypeI32:
|
|
cdtype = C.GGML_TYPE_I32
|
|
default:
|
|
panic("unsupported dtype")
|
|
}
|
|
|
|
if len(shape) < 1 || shape[0] == 0 {
|
|
var shape C.int64_t = 0
|
|
return &Tensor{b: c.b, t: C.ggml_new_tensor(c.ctx, cdtype, 1, &shape)}
|
|
} else if len(shape) > 4 {
|
|
panic("unsupported number of dimensions")
|
|
}
|
|
|
|
for _, dim := range shape {
|
|
if dim < 1 {
|
|
panic("invalid shape")
|
|
}
|
|
}
|
|
|
|
t := C.ggml_new_tensor(c.ctx, cdtype, C.int(len(shape)), shapeToGGML(shape))
|
|
size := pad(C.ggml_backend_buft_get_alloc_size(c.buft, t), C.ggml_backend_buft_get_alignment(c.buft))
|
|
|
|
b := C.ggml_backend_buft_alloc_buffer(c.buft, size)
|
|
if c.layer >= 0 {
|
|
cache := &c.b.btDeviceMemory[c.buft].Cache[c.layer]
|
|
|
|
cache.Size += uint64(size)
|
|
if b != nil {
|
|
cache.Status = ml.Allocated
|
|
} else {
|
|
cache.Status = ml.Failed
|
|
}
|
|
}
|
|
|
|
if b == nil {
|
|
panic(ml.ErrNoMem{BackendMemory: *c.b.requiredMemory})
|
|
}
|
|
|
|
*c.allocatedBuffers = append(*c.allocatedBuffers, b)
|
|
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
|
|
return &Tensor{b: c.b, t: t}
|
|
}
|
|
|
|
func (c *Context) Empty(dtype ml.DType, shape ...int) ml.Tensor {
|
|
return c.newTensor(dtype, shape)
|
|
}
|
|
|
|
func (c *Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
|
|
t := c.newTensor(dtype, shape)
|
|
C.ggml_set_zero(t.(*Tensor).t)
|
|
return t
|
|
}
|
|
|
|
func checkShape[S ~[]E, E any](s S, shape ...int) {
|
|
n := len(s)
|
|
|
|
if n == 0 {
|
|
return
|
|
}
|
|
|
|
for _, v := range shape {
|
|
n /= v
|
|
}
|
|
|
|
if n != 1 {
|
|
panic(fmt.Errorf("invalid shape: %v", shape))
|
|
}
|
|
}
|
|
|
|
func (c *Context) FromFloatSlice(s []float32, shape ...int) ml.Tensor {
|
|
checkShape(s, shape...)
|
|
|
|
t := c.newTensor(ml.DTypeF32, shape)
|
|
|
|
if len(s) > 0 {
|
|
C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
|
|
}
|
|
|
|
return t
|
|
}
|
|
|
|
func (c *Context) FromIntSlice(s []int32, shape ...int) ml.Tensor {
|
|
checkShape(s, shape...)
|
|
|
|
t := c.newTensor(ml.DTypeI32, shape)
|
|
|
|
if len(s) > 0 {
|
|
C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
|
|
}
|
|
|
|
return t
|
|
}
|
|
|
|
func (c Context) Arange(start, stop, step float32, dtype ml.DType) ml.Tensor {
|
|
switch dtype {
|
|
case ml.DTypeF32:
|
|
// ggml_arange creates a float32 tensor
|
|
return &Tensor{
|
|
b: c.b,
|
|
t: C.ggml_arange(c.ctx, C.float(start), C.float(stop), C.float(step)),
|
|
}
|
|
case ml.DTypeI32:
|
|
// ggml_cast does not support float32 to int32 conversion
|
|
arange := make([]int32, 0, int((stop-start)/step))
|
|
for i := start; i < stop; i += step {
|
|
arange = append(arange, int32(i))
|
|
}
|
|
|
|
return c.Input().FromIntSlice(arange, len(arange))
|
|
default:
|
|
panic("unsupported dtype for arange")
|
|
}
|
|
}
|
|
|
|
func (c *Context) Close() {
|
|
if c != nil {
|
|
for _, b := range *c.allocatedBuffers {
|
|
C.ggml_backend_buffer_free(b)
|
|
}
|
|
*c.allocatedBuffers = nil
|
|
|
|
C.ggml_free(c.ctx)
|
|
}
|
|
}
|
|
|
|
type Tensor struct {
|
|
b *Backend
|
|
t *C.struct_ggml_tensor
|
|
sync func()
|
|
}
|
|
|
|
func (t *Tensor) LogValue() slog.Value {
|
|
return slog.GroupValue(
|
|
slog.String("name", C.GoString(C.ggml_get_name(t.t))),
|
|
slog.String("type", C.GoString(C.ggml_type_name(t.t._type))),
|
|
slog.Any("shape", t.Shape()),
|
|
)
|
|
}
|
|
|
|
func (t *Tensor) Dim(n int) int {
|
|
return int(t.t.ne[n])
|
|
}
|
|
|
|
func (t *Tensor) Stride(n int) int {
|
|
return int(t.t.nb[n])
|
|
}
|
|
|
|
func (t *Tensor) Shape() []int {
|
|
shape := make([]int, C.ggml_n_dims(t.t))
|
|
for i := range shape {
|
|
shape[i] = t.Dim(i)
|
|
}
|
|
|
|
return shape
|
|
}
|
|
|
|
func (t *Tensor) Bytes() (data []byte) {
|
|
if t.sync != nil {
|
|
data = make([]byte, C.ggml_nbytes(t.t))
|
|
|
|
t.sync()
|
|
C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
func (t *Tensor) Floats() (data []float32) {
|
|
if t.sync != nil {
|
|
data = make([]float32, C.ggml_nelements(t.t))
|
|
|
|
t.sync()
|
|
C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
func (t *Tensor) DType() ml.DType {
|
|
switch t.t._type {
|
|
case C.GGML_TYPE_F32:
|
|
return ml.DTypeF32
|
|
case C.GGML_TYPE_F16:
|
|
return ml.DTypeF16
|
|
case C.GGML_TYPE_Q8_0:
|
|
return ml.DTypeQ80
|
|
case C.GGML_TYPE_Q4_0:
|
|
return ml.DTypeQ40
|
|
case C.GGML_TYPE_I32:
|
|
return ml.DTypeI32
|
|
default:
|
|
return ml.DTypeOther
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Neg(ctx ml.Context) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_neg(ctx.(*Context).ctx, t.t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_add(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Repeat(ctx ml.Context, dim, n int) ml.Tensor {
|
|
if dim < 0 || dim >= C.GGML_MAX_DIMS {
|
|
panic("invalid dimension")
|
|
}
|
|
|
|
shape := make([]C.int64_t, C.GGML_MAX_DIMS)
|
|
for i := range C.GGML_MAX_DIMS {
|
|
if i == dim {
|
|
shape[i] = C.int64_t(t.Dim(i) * n)
|
|
} else {
|
|
shape[i] = C.int64_t(t.Dim(i))
|
|
}
|
|
}
|
|
|
|
tmpl := C.ggml_new_tensor(ctx.(*Context).ctx, t.t._type, C.int(len(shape)), unsafe.SliceData(shape))
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_repeat(ctx.(*Context).ctx, t.t, tmpl),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
|
|
if len(s) > 0 {
|
|
return t.Concat(ctx, s[0].Stack(ctx, dim, s[1:]...), dim)
|
|
}
|
|
|
|
return t
|
|
}
|
|
|
|
func (t *Tensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_concat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(dim)),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Contiguous(ctx ml.Context) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_cont(ctx.(*Context).ctx, t.t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_mul(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Div(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_div(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
mul := C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t)
|
|
C.ggml_mul_mat_set_prec(mul, C.GGML_PREC_F32)
|
|
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: mul,
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) MulmatID(ctx ml.Context, t2, ids ml.Tensor) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_mul_mat_id(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, ids.(*Tensor).t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
|
|
tt := C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))
|
|
if w != nil {
|
|
tt = C.ggml_mul(ctx.(*Context).ctx, tt, w.(*Tensor).t)
|
|
if b != nil {
|
|
tt = C.ggml_add(ctx.(*Context).ctx, tt, b.(*Tensor).t)
|
|
}
|
|
}
|
|
|
|
return &Tensor{b: t.b, t: tt}
|
|
}
|
|
|
|
func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor {
|
|
tt := C.ggml_rms_norm(ctx.(*Context).ctx, t.t, C.float(eps))
|
|
if w != nil {
|
|
tt = C.ggml_mul(ctx.(*Context).ctx, tt, w.(*Tensor).t)
|
|
}
|
|
|
|
return &Tensor{b: t.b, t: tt}
|
|
}
|
|
|
|
func (t *Tensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
|
|
if len(shape) != 4 {
|
|
panic("expected 4 dimensions")
|
|
} else if shape[3] != 0 {
|
|
panic("cuda does not support 4d tensors")
|
|
}
|
|
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_pad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
|
|
if len(shape) != 4 {
|
|
panic("expected 4 dimensions")
|
|
}
|
|
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_permute(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_get_rows(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_cpy(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
|
|
switch len(shape) {
|
|
case 1:
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_reshape_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
|
|
}
|
|
case 2:
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_reshape_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
|
|
}
|
|
case 3:
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_reshape_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
|
|
}
|
|
case 4:
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_reshape_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
|
|
}
|
|
default:
|
|
panic("unsupported number of dimensions")
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_scale(ctx.(*Context).ctx, t.t, (C.float)(s)),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) SumRows(ctx ml.Context) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_sum_rows(ctx.(*Context).ctx, t.t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_soft_max(ctx.(*Context).ctx, t.t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Sin(ctx ml.Context) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_sin(ctx.(*Context).ctx, t.t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Cos(ctx ml.Context) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_cos(ctx.(*Context).ctx, t.t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_tanh_inplace(ctx.(*Context).ctx, t.t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Sigmoid(ctx ml.Context) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_sigmoid_inplace(ctx.(*Context).ctx, t.t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
|
|
switch len(shape) {
|
|
case 1:
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_view_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.size_t(offset)),
|
|
}
|
|
case 3:
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_view_2d(ctx.(*Context).ctx, t.t,
|
|
C.int64_t(shape[0]), C.int64_t(shape[2]),
|
|
C.size_t(shape[1]),
|
|
C.size_t(offset)),
|
|
}
|
|
case 5:
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_view_3d(ctx.(*Context).ctx, t.t,
|
|
C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]),
|
|
C.size_t(shape[1]), C.size_t(shape[3]),
|
|
C.size_t(offset)),
|
|
}
|
|
case 7:
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_view_4d(ctx.(*Context).ctx, t.t,
|
|
C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.int64_t(shape[6]),
|
|
C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(shape[5]),
|
|
C.size_t(offset)),
|
|
}
|
|
default:
|
|
panic("unsupported number of dimensions")
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) RoPE(ctx ml.Context, positions ml.Tensor, ropeDim int, ropeBase, ropeScale float32, options ...func(*rope.Options)) ml.Tensor {
|
|
// Default options
|
|
opts := &rope.Options{OriginalContextLength: 131072, Factors: &Tensor{}}
|
|
|
|
// Apply any provided options
|
|
for _, option := range options {
|
|
option(opts)
|
|
}
|
|
|
|
dequant := t.t
|
|
if C.ggml_is_quantized(t.t._type) {
|
|
dequant = C.ggml_cast(ctx.(*Context).ctx, t.t, C.GGML_TYPE_F32)
|
|
}
|
|
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_rope_ext(
|
|
ctx.(*Context).ctx,
|
|
dequant,
|
|
positions.(*Tensor).t,
|
|
opts.Factors.(*Tensor).t,
|
|
C.int(ropeDim),
|
|
C.int(opts.Type),
|
|
C.int(opts.OriginalContextLength),
|
|
C.float(ropeBase),
|
|
C.float(ropeScale),
|
|
C.float(0.0),
|
|
C.float(1.0),
|
|
C.float(32.0),
|
|
C.float(1.0),
|
|
),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) IM2Col(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_im2col(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1), true, C.GGML_TYPE_F32),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) GELU(ctx ml.Context) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) SILU(ctx ml.Context) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) AvgPool2D(ctx ml.Context, k, s int, p float32) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_pool_2d(ctx.(*Context).ctx, t.t, C.GGML_OP_POOL_AVG, C.int(k), C.int(k), C.int(s), C.int(s), C.float(p), C.float(p)),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Set(ctx ml.Context, t2 ml.Tensor, offset int, strides ...int) ml.Tensor {
|
|
var tt *C.struct_ggml_tensor
|
|
switch len(strides) {
|
|
case 0:
|
|
tt = C.ggml_set_1d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.size_t(offset))
|
|
case 1:
|
|
tt = C.ggml_set_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.size_t(offset), C.size_t(strides[0]))
|
|
default:
|
|
panic("unsupported number of dimensions")
|
|
}
|
|
|
|
return &Tensor{b: t.b, t: tt}
|
|
}
|
|
|
|
func (t *Tensor) ScaledDotProductAttention(ctx ml.Context, key, value, mask ml.Tensor, scale float64) ml.Tensor {
|
|
var kqMask *C.struct_ggml_tensor
|
|
if mask != nil {
|
|
kqMask = mask.(*Tensor).t
|
|
}
|
|
|
|
query := t.Permute(ctx, 0, 2, 1, 3)
|
|
key = key.Permute(ctx, 0, 2, 1, 3)
|
|
|
|
if t.b.flashAttention {
|
|
value = value.Permute(ctx, 0, 2, 1, 3)
|
|
|
|
kqv := C.ggml_flash_attn_ext(ctx.(*Context).ctx, query.(*Tensor).t, key.(*Tensor).t, value.(*Tensor).t, kqMask, C.float(scale), 0, 0)
|
|
C.ggml_flash_attn_ext_set_prec(kqv, C.GGML_PREC_F32)
|
|
return &Tensor{b: t.b, t: kqv}
|
|
} else {
|
|
kq := key.MulmatFullPrec(ctx, query)
|
|
kq = &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_soft_max_ext(ctx.(*Context).ctx, kq.(*Tensor).t, kqMask, C.float(scale), 0),
|
|
}
|
|
|
|
kqv := value.Mulmat(ctx, kq)
|
|
return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Duplicate(ctx ml.Context) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_dup(ctx.(*Context).ctx, t.t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) TopK(ctx ml.Context, k int) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_top_k(ctx.(*Context).ctx, t.t, C.int(k)),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Argsort(ctx ml.Context) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_argsort(ctx.(*Context).ctx, t.t, C.GGML_SORT_ORDER_ASC),
|
|
}
|
|
}
|