Files
ollama/llama/llama.go
Daniel Hiltgen bc8909fb38 Use runners for GPU discovery (#12090)
This revamps how we discover GPUs in the system by leveraging the Ollama
runner.  This should eliminate inconsistency between our GPU discovery and the
runners capabilities at runtime, particularly for cases where we try to filter
out unsupported GPUs.  Now the runner does that implicitly based on the actual
device list.  In some cases free VRAM reporting can be unreliable which can
leaad to scheduling mistakes, so this also includes a patch to leverage more
reliable VRAM reporting libraries if available.

Automatic workarounds have been removed as only one GPU leveraged this, which
is now documented. This GPU will soon fall off the support matrix with the next
ROCm bump.

Additional cleanup of the scheduler and discovery packages can be done in the
future once we have switched on the new memory management code, and removed
support for the llama runner.
2025-10-01 15:12:32 -07:00

726 lines
19 KiB
Go

package llama
/*
#cgo CFLAGS: -std=c11
#cgo windows CFLAGS: -Wno-dll-attribute-on-redeclaration
#cgo CXXFLAGS: -std=c++17
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/include
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/common
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/vendor
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/tools/mtmd
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/src
#cgo CPPFLAGS: -I${SRCDIR}/../ml/backend/ggml/ggml/include
#include <stdlib.h>
#include "ggml.h"
#include "llama.h"
#include "mtmd.h"
#include "mtmd-helper.h"
#include "gguf.h"
#include "sampling_ext.h"
extern bool llamaProgressCallback(float progress, void *user_data);
extern void llamaLog(int level, char* text, void* user_data);
*/
import "C"
import (
"context"
_ "embed"
"errors"
"fmt"
"log/slog"
"os"
"runtime"
"runtime/cgo"
"slices"
"strings"
"sync"
"unsafe"
_ "github.com/ollama/ollama/llama/llama.cpp/common"
_ "github.com/ollama/ollama/llama/llama.cpp/src"
_ "github.com/ollama/ollama/llama/llama.cpp/tools/mtmd"
"github.com/ollama/ollama/ml"
ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
)
func init() {
C.llama_log_set(C.ggml_log_callback(C.llamaLog), nil)
}
//export llamaLog
func llamaLog(level C.int, text *C.char, _ unsafe.Pointer) {
// slog levels zeros INFO and are multiples of 4
if slog.Default().Enabled(context.TODO(), slog.Level(int(level-C.GGML_LOG_LEVEL_INFO)*4)) {
fmt.Fprint(os.Stderr, C.GoString(text))
}
}
func BackendInit() {
ggml.OnceLoad()
C.llama_backend_init()
}
func EnumerateGPUs() []ml.DeviceID {
var ids []ml.DeviceID
for i := range C.ggml_backend_dev_count() {
device := C.ggml_backend_dev_get(i)
if C.ggml_backend_dev_type(device) == C.GGML_BACKEND_DEVICE_TYPE_GPU {
var props C.struct_ggml_backend_dev_props
C.ggml_backend_dev_get_props(device, &props)
ids = append(ids, ml.DeviceID{
ID: C.GoString(props.id),
Library: C.GoString(props.library),
})
}
}
return ids
}
func GetModelArch(modelPath string) (string, error) {
mp := C.CString(modelPath)
defer C.free(unsafe.Pointer(mp))
gguf_ctx := C.gguf_init_from_file(mp, C.struct_gguf_init_params{no_alloc: true, ctx: (**C.struct_ggml_context)(C.NULL)})
if gguf_ctx == nil {
return "", errors.New("unable to load model file")
}
defer C.gguf_free(gguf_ctx)
key := C.CString("general.architecture")
defer C.free(unsafe.Pointer(key))
arch_index := C.gguf_find_key(gguf_ctx, key)
if int(arch_index) < 0 {
return "", errors.New("unknown model architecture")
}
arch := C.gguf_get_val_str(gguf_ctx, arch_index)
return C.GoString(arch), nil
}
type ContextParams struct {
c C.struct_llama_context_params
}
func NewContextParams(numCtx int, batchSize int, numSeqMax int, threads int, flashAttention bool, kvCacheType string) ContextParams {
params := C.llama_context_default_params()
params.n_ctx = C.uint(numCtx)
params.n_batch = C.uint(batchSize)
params.n_seq_max = C.uint(numSeqMax)
params.n_threads = C.int(threads)
params.n_threads_batch = params.n_threads
params.embeddings = C.bool(true)
params.flash_attn = C.bool(flashAttention)
params.type_k = kvCacheTypeFromStr(strings.ToLower(kvCacheType))
params.type_v = kvCacheTypeFromStr(strings.ToLower(kvCacheType))
return ContextParams{c: params}
}
// kvCacheTypeFromStr converts a string cache type to the corresponding GGML type value
func kvCacheTypeFromStr(s string) C.enum_ggml_type {
if s == "" {
return C.GGML_TYPE_F16
}
switch s {
case "q8_0":
return C.GGML_TYPE_Q8_0
case "q4_0":
return C.GGML_TYPE_Q4_0
default:
return C.GGML_TYPE_F16
}
}
type Context struct {
c *C.struct_llama_context
numThreads int
}
var ErrKvCacheFull = errors.New("could not find a kv cache slot")
func (c *Context) Decode(batch *Batch) error {
// Positive return values does not mean a fatal error, but rather a warning.
// 0 - success
// 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
// < 0 - error
code := int(C.llama_decode(c.c, batch.c))
if code < 0 {
return fmt.Errorf("llama_decode failed with code %d", code)
}
if code > 0 {
return ErrKvCacheFull
}
return nil
}
func (c *Context) Model() *Model {
return &Model{c: C.llama_get_model(c.c)}
}
func (c *Context) KvCacheSeqAdd(seqId int, p0 int, p1 int, delta int) {
C.llama_memory_seq_add(C.llama_get_memory(c.c), C.int(seqId), C.int(p0), C.int(p1), C.int(delta))
}
func (c *Context) KvCacheSeqRm(seqId int, p0 int, p1 int) bool {
return bool(C.llama_memory_seq_rm(C.llama_get_memory(c.c), C.int(seqId), C.int(p0), C.int(p1)))
}
func (c *Context) KvCacheSeqCp(srcSeqId int, dstSeqId int, p0 int, p1 int) {
C.llama_memory_seq_cp(C.llama_get_memory(c.c), C.int(srcSeqId), C.int(dstSeqId), C.int(p0), C.int(p1))
}
func (c *Context) KvCacheClear() {
C.llama_memory_clear(C.llama_get_memory(c.c), true)
}
func (c *Context) KvCacheCanShift() bool {
return bool(C.llama_memory_can_shift(C.llama_get_memory(c.c)))
}
// Get the embeddings for a sequence id
func (c *Context) GetEmbeddingsSeq(seqId int) []float32 {
e := unsafe.Pointer(C.llama_get_embeddings_seq(c.c, C.int(seqId)))
if e == nil {
return nil
}
embeddings := make([]float32, c.Model().NEmbd())
_ = copy(embeddings, unsafe.Slice((*float32)(e), c.Model().NEmbd()))
return embeddings
}
func (c *Context) GetEmbeddingsIth(i int) []float32 {
e := unsafe.Pointer(C.llama_get_embeddings_ith(c.c, C.int32_t(i)))
if e == nil {
return nil
}
embeddings := make([]float32, c.Model().NEmbd())
_ = copy(embeddings, unsafe.Slice((*float32)(e), c.Model().NEmbd()))
return embeddings
}
type ModelParams struct {
NumGpuLayers int
MainGpu int
UseMmap bool
TensorSplit []float32
Progress func(float32)
VocabOnly bool
}
//export llamaProgressCallback
func llamaProgressCallback(progress C.float, userData unsafe.Pointer) C.bool {
handle := *(*cgo.Handle)(userData)
callback := handle.Value().(func(float32))
callback(float32(progress))
return true
}
func LoadModelFromFile(modelPath string, params ModelParams) (*Model, error) {
cparams := C.llama_model_default_params()
cparams.n_gpu_layers = C.int(params.NumGpuLayers)
cparams.main_gpu = C.int32_t(params.MainGpu)
cparams.use_mmap = C.bool(params.UseMmap)
cparams.vocab_only = C.bool(params.VocabOnly)
if len(params.TensorSplit) > 0 {
tensorSplitData := &params.TensorSplit[0]
var tensorSplitPin runtime.Pinner
tensorSplitPin.Pin(tensorSplitData)
defer tensorSplitPin.Unpin()
cparams.tensor_split = (*C.float)(unsafe.Pointer(tensorSplitData))
}
if params.Progress != nil {
handle := cgo.NewHandle(params.Progress)
defer handle.Delete()
var handlePin runtime.Pinner
handlePin.Pin(&handle)
defer handlePin.Unpin()
cparams.progress_callback = C.llama_progress_callback(C.llamaProgressCallback)
cparams.progress_callback_user_data = unsafe.Pointer(&handle)
}
m := Model{c: C.llama_model_load_from_file(C.CString(modelPath), cparams)}
if m.c == nil {
return nil, fmt.Errorf("unable to load model: %s", modelPath)
}
return &m, nil
}
func FreeModel(model *Model) {
C.llama_model_free(model.c)
}
func NewContextWithModel(model *Model, params ContextParams) (*Context, error) {
c := Context{
c: C.llama_init_from_model(model.c, params.c),
numThreads: int(params.c.n_threads),
}
if c.c == nil {
return nil, errors.New("unable to create llama context")
}
return &c, nil
}
func (m *Model) NumVocab() int {
return int(C.llama_vocab_n_tokens(m.Vocab()))
}
func (m *Model) TokenIsEog(token int) bool {
return bool(C.llama_vocab_is_eog(m.Vocab(), C.llama_token(token)))
}
func (m *Model) AddBOSToken() bool {
return bool(C.llama_vocab_get_add_bos(m.Vocab()))
}
func (m *Model) ApplyLoraFromFile(context *Context, loraPath string, scale float32, threads int) error {
cLoraPath := C.CString(loraPath)
defer C.free(unsafe.Pointer(cLoraPath))
loraAdapter := C.llama_adapter_lora_init(m.c, cLoraPath)
if loraAdapter == nil {
return errors.New("unable to load lora")
}
err := -1
if loraAdapter != nil {
err = int(C.llama_set_adapter_lora(context.c, loraAdapter, C.float(scale)))
}
if err != 0 {
return errors.New("error applying lora from file")
}
return nil
}
func (m *Model) Vocab() *C.struct_llama_vocab {
return C.llama_model_get_vocab(m.c)
}
type Batch struct {
c C.struct_llama_batch
batchSize int
maxSeq int
embedSize int
}
// Creates a new batch for either word tokens or image embeddings (if embedSize is non-zero).
// Batches cannot contain both types at the same time. batchSize is the maximum number of entries
// that can be added per sequence
func NewBatch(batchSize int, maxSeq int, embedSize int) (*Batch, error) {
b := Batch{
c: C.llama_batch_init(C.int(batchSize*maxSeq), C.int(embedSize), C.int(maxSeq)),
batchSize: batchSize,
maxSeq: maxSeq,
embedSize: embedSize,
}
// Check to see if any of the allocations in llama_batch_init() failed
nilPointer := (embedSize == 0 && b.c.token == nil) || (embedSize != 0 && b.c.embd == nil) ||
b.c.pos == nil || b.c.n_seq_id == nil || b.c.seq_id == nil || b.c.logits == nil ||
slices.Contains(unsafe.Slice(b.c.seq_id, b.allocSize()), nil)
if nilPointer {
C.llama_batch_free(b.c)
return nil, fmt.Errorf("unable to allocate batch (batchSize=%v maxSeq=%v embedSize=%v)", batchSize, maxSeq, embedSize)
}
return &b, nil
}
func (b *Batch) Size() int {
return b.batchSize
}
func (b *Batch) allocSize() int {
return b.batchSize * b.maxSeq
}
func (b *Batch) NumTokens() int {
return int(b.c.n_tokens)
}
func (b *Batch) IsEmbedding() bool {
return b.embedSize != 0
}
// Add adds either a token or an image embedding to the batch depending on the type
// when the batch was initialized. The other argument will be ignored. Adds to the
// batch with the given position for the given sequence ids, and optionally instructs
// to include logits.
func (b *Batch) Add(token int, embed []float32, pos int, logits bool, seqIds ...int) {
if !b.IsEmbedding() {
unsafe.Slice(b.c.token, b.allocSize())[b.c.n_tokens] = C.llama_token(token)
} else {
copy(unsafe.Slice((*float32)(b.c.embd), b.allocSize()*b.embedSize)[int(b.c.n_tokens)*b.embedSize:], embed)
}
unsafe.Slice(b.c.pos, b.allocSize())[b.c.n_tokens] = C.llama_pos(pos)
unsafe.Slice(b.c.n_seq_id, b.allocSize())[b.c.n_tokens] = C.int(len(seqIds))
for i, s := range seqIds {
unsafe.Slice((unsafe.Slice(b.c.seq_id, b.allocSize())[b.c.n_tokens]), C.int(len(seqIds)))[i] = C.int32_t(s)
}
if logits {
unsafe.Slice(b.c.logits, b.allocSize())[b.c.n_tokens] = 1
} else {
unsafe.Slice(b.c.logits, b.allocSize())[b.c.n_tokens] = 0
}
b.c.n_tokens += 1
}
func (b *Batch) Clear() {
b.c.n_tokens = 0
}
func (b *Batch) Free() {
b.batchSize = 0
C.llama_batch_free(b.c)
}
type Model struct {
c *C.struct_llama_model
}
func (m *Model) TokenToPiece(token int) string {
tokenLen := 12
buf := make([]byte, tokenLen)
tokenLen = int(C.llama_token_to_piece(
m.Vocab(),
C.int32_t(token),
(*C.char)(unsafe.Pointer(&buf[0])),
C.int32_t(tokenLen),
C.int32_t(0),
C.bool(true),
))
if tokenLen < 0 {
tokenLen = -tokenLen
buf = make([]byte, tokenLen)
C.llama_token_to_piece(
m.Vocab(),
C.int32_t(token),
(*C.char)(unsafe.Pointer(&buf[0])),
C.int32_t(tokenLen),
C.int32_t(0),
C.bool(true),
)
}
return strings.TrimRight(string(buf), "\x00")
}
func (m *Model) Tokenize(text string, addSpecial bool, parseSpecial bool) ([]int, error) {
maxTokens := len(text) + 2
cTokens := make([]C.llama_token, maxTokens)
cText := C.CString(text)
defer C.free(unsafe.Pointer(cText))
result := C.llama_tokenize(
m.Vocab(),
cText,
C.int32_t(len(text)),
&cTokens[0],
C.int32_t(maxTokens),
C.bool(addSpecial),
C.bool(parseSpecial),
)
// if the result is negative, reallocate and retry with the correct buffer size
if result < 0 {
maxTokens = int(-result)
cTokens = make([]C.llama_token, maxTokens)
result = C.llama_tokenize(
m.Vocab(),
cText,
C.int32_t(len(text)),
&cTokens[0],
C.int32_t(maxTokens),
C.bool(addSpecial),
C.bool(parseSpecial),
)
if result < 0 {
return nil, fmt.Errorf("tokenization failed, required %d tokens", -result)
}
}
tokens := make([]int, result)
for i := range result {
tokens[i] = int(cTokens[i])
}
return tokens, nil
}
func (m *Model) NEmbd() int {
return int(C.llama_model_n_embd(m.c))
}
// vision processing
type MtmdContext struct {
c *C.struct_mtmd_context
}
func NewMtmdContext(llamaContext *Context, modelPath string) (*MtmdContext, error) {
mp := C.CString(modelPath)
defer C.free(unsafe.Pointer(mp))
// TODO: Support non-default params
cp := C.mtmd_context_params_default()
// NOTE: The model and projector embedding lengths are checked during init
c := C.mtmd_init_from_file(mp, C.llama_get_model(llamaContext.c), cp)
if c == nil {
return nil, fmt.Errorf("unable to load mmtd model: %v", modelPath)
}
return &MtmdContext{c: c}, nil
}
func (c *MtmdContext) Free() {
C.mtmd_free(c.c)
}
func (c *MtmdContext) NewEmbed(llamaContext *Context, data []byte) ([][]float32, error) {
// Initialize the input chunks pointer
ic := C.mtmd_input_chunks_init()
defer C.mtmd_input_chunks_free(ic)
// Initialize an empty text prompt so we can tokenize
it := C.mtmd_input_text_init(C.mtmd_default_marker(), true, true)
defer C.mtmd_input_text_free(it)
// Initialize a bitmap with the image data
bm := C.mtmd_helper_bitmap_init_from_buf(c.c, (*C.uchar)(unsafe.Pointer(&data[0])), C.size_t(len(data)))
defer C.mtmd_bitmap_free(bm)
// Tokenize the image
if C.int32_t(0) != C.mtmd_tokenize(c.c, ic, it, &bm, 1) {
return nil, errors.New("unable to tokenize mtmd embedding from image")
}
nChunks := C.mtmd_input_chunks_size(ic)
numEmbed := llamaContext.Model().NEmbd()
embed := make([][]float32, 0)
for i := range int(nChunks) {
chunk := C.mtmd_input_chunks_get(ic, C.size_t(i))
numTokens := int(C.mtmd_input_chunk_get_n_tokens(chunk))
slog.Debug("chunk tokens", "index", i, "numTokens", numTokens)
// Encode the chunk
if C.int32_t(0) != C.mtmd_encode_chunk(c.c, chunk) {
return nil, errors.New("unable to encode mtmd image chunk")
}
// Get the embeddings for this chunk
chunkEmbed := make([][]float32, numTokens)
chunkEmbd := C.mtmd_get_output_embd(c.c)
if nil == chunkEmbd {
continue
}
// Extend the embedding array for each token
s := unsafe.Slice((*float32)(chunkEmbd), numTokens*numEmbed)
rows := make([]float32, len(s))
copy(rows, s)
for i := range numTokens {
chunkEmbed[i] = rows[i*numEmbed : (i+1)*numEmbed]
}
embed = append(embed, chunkEmbed...)
}
slog.Debug("image embeddings", "totalEmbeddings", len(embed))
return embed, nil
}
func (c *Context) Synchronize() {
C.llama_synchronize(c.c)
}
// sampling
// TODO: this is a temporary wrapper to allow calling C++ code from CGo
type SamplingContext struct {
c *C.struct_common_sampler
}
type SamplingParams struct {
TopK int
TopP float32
MinP float32
TypicalP float32
Temp float32
RepeatLastN int
PenaltyRepeat float32
PenaltyFreq float32
PenaltyPresent float32
PenalizeNl bool
Seed uint32
Grammar string
}
func NewSamplingContext(model *Model, params SamplingParams) (*SamplingContext, error) {
var cparams C.struct_common_sampler_cparams
cparams.top_k = C.int32_t(params.TopK)
cparams.top_p = C.float(params.TopP)
cparams.min_p = C.float(params.MinP)
cparams.typical_p = C.float(params.TypicalP)
cparams.temp = C.float(params.Temp)
cparams.penalty_last_n = C.int32_t(params.RepeatLastN)
cparams.penalty_repeat = C.float(params.PenaltyRepeat)
cparams.penalty_freq = C.float(params.PenaltyFreq)
cparams.penalty_present = C.float(params.PenaltyPresent)
cparams.seed = C.uint32_t(params.Seed)
grammar := C.CString(params.Grammar)
defer C.free(unsafe.Pointer(grammar))
cparams.grammar = grammar
context := &SamplingContext{c: C.common_sampler_cinit(model.c, &cparams)}
if context.c == nil {
return nil, errors.New("unable to create sampling context")
}
runtime.SetFinalizer(context, func(s *SamplingContext) { C.common_sampler_cfree(s.c) })
return context, nil
}
func (s *SamplingContext) Reset() {
C.common_sampler_creset(s.c)
}
func (s *SamplingContext) Sample(llamaContext *Context, idx int) int {
return int(C.common_sampler_csample(s.c, llamaContext.c, C.int(idx)))
}
func (s *SamplingContext) Accept(id int, applyGrammar bool) {
C.common_sampler_caccept(s.c, C.llama_token(id), C.bool(applyGrammar))
}
// SchemaToGrammar converts the provided JSON schema to a grammar. It returns
// nil if the provided schema is invalid JSON or an invalid JSON schema.
func SchemaToGrammar(schema []byte) []byte {
cStr := C.CString(string(schema))
defer C.free(unsafe.Pointer(cStr))
// Allocate buffer for grammar based on schema length but with upper bound
maxLen := max(32768, min(1024*1024, len(schema)*4))
buf := make([]byte, maxLen)
// Call C function to convert schema to grammar
n := C.schema_to_grammar(cStr, (*C.char)(unsafe.Pointer(&buf[0])), C.size_t(maxLen))
if n == 0 {
// preserve nil
return nil
}
return buf[:n]
}
type TokenData struct {
ID int32
Logit float32
}
type Grammar struct {
c *C.struct_llama_grammar
mu sync.Mutex
}
func NewGrammar(grammar string, vocabIds []uint32, vocabValues []string, eogTokens []int32) *Grammar {
cGrammar := C.CString(grammar)
defer C.free(unsafe.Pointer(cGrammar))
cTokens := make([]C.uint32_t, len(vocabIds))
for i, token := range vocabIds {
cTokens[i] = C.uint32_t(token)
}
cPieces := make([]*C.char, len(vocabValues))
for i, piece := range vocabValues {
cPieces[i] = C.CString(piece)
defer C.free(unsafe.Pointer(cPieces[i]))
}
cEogTokens := make([]C.uint32_t, len(eogTokens))
for i, token := range eogTokens {
cEogTokens[i] = C.uint32_t(token)
}
g := C.grammar_init(cGrammar, unsafe.SliceData(cTokens), C.size_t(len(cTokens)), unsafe.SliceData(cPieces), unsafe.SliceData(cEogTokens), C.size_t(len(cEogTokens)))
if g == nil {
return nil
}
return &Grammar{c: g}
}
func (g *Grammar) Free() {
g.mu.Lock()
defer g.mu.Unlock()
if g.c != nil {
C.grammar_free(g.c)
g.c = nil
}
}
func (g *Grammar) Apply(tokens []TokenData) {
g.mu.Lock()
defer g.mu.Unlock()
if g.c == nil {
return
}
tds := make([]C.struct_llama_token_data, len(tokens))
for i, token := range tokens {
tds[i] = C.struct_llama_token_data{
id: C.int32_t(token.ID),
logit: C.float(token.Logit),
p: C.float(0.0),
}
}
tda := &C.llama_token_data_array{
data: (*C.struct_llama_token_data)(unsafe.Pointer(&tds[0])),
size: C.size_t(len(tokens)),
selected: C.int64_t(-1),
sorted: C.bool(false),
}
var pinner runtime.Pinner
pinner.Pin(&tds[0])
defer pinner.Unpin()
C.grammar_apply(g.c, tda)
for i := range tokens {
tokens[i].Logit = float32(tds[i].logit)
}
}
func (g *Grammar) Accept(token int32) {
g.mu.Lock()
defer g.mu.Unlock()
// Check if grammar was freed
if g.c == nil {
return
}
C.grammar_accept(g.c, C.llama_token(token))
}