Files
ollama/model/model.go
Jesse Gross 1f371ea92f ml: Panic rather than return error on tensor allocation failure
FromFloatSlice and FromIntSlice return an error if the shape doesn't
match the passed data or if memory can't be allocated. Since these
are inputs, the memory being allocated is system memory rather than VRAM.

In many cases, the caller can't really handle the error and panics.

Empty and Zeros directly panic if they can't allocate memory.

This makes things consistent by panicing for the first two cases,
removing a fair amount of error handling code. This is also consistent
with how Go typically handles these situations.
2025-05-22 14:38:09 -07:00

309 lines
7.6 KiB
Go

package model
import (
"context"
"errors"
"fmt"
_ "image/jpeg"
_ "image/png"
"log/slog"
"os"
"reflect"
"strconv"
"strings"
_ "golang.org/x/image/bmp"
_ "golang.org/x/image/tiff"
_ "golang.org/x/image/webp"
"github.com/ollama/ollama/fs"
fsggml "github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/logutil"
"github.com/ollama/ollama/ml"
_ "github.com/ollama/ollama/ml/backend"
"github.com/ollama/ollama/model/input"
)
var ErrNoVisionModel = errors.New("this model is missing data required for image input")
// Model implements a specific model architecture, defining the forward pass and any model-specific configuration
type Model interface {
Forward(ml.Context, input.Batch) (ml.Tensor, error)
Backend() ml.Backend
Config() config
}
// MultimodalProcessor must be implemented by multimodal models.
type MultimodalProcessor interface {
// EncodeMultimodal processes a single input (such as an image) and
// generates an output (typically an embedding) that can be used by the model.
//
// The return value is one or more tensors, each with optional model-specific
// opaque metadata. Typically, the tensors might be views into an embedding
// with each view representing a chunk of data that can be processed independently
// in different batches.
//
// The result may be cached by the runner.
EncodeMultimodal(ml.Context, []byte) ([]input.Multimodal, error)
// PostTokenize is called after tokenization to allow the model to edit the
// input stream to correctly arrange multimodal elements.
//
// The input is a slice of tokens with the results of EncodeMultimodal interleaved
// in the order that the user provided them. Each element of the slice will be
// either a single token or single multimodal object.
//
// The model must ensure that inputs are stored according to how they will be
// processed and stored in the cache. For example, Llava-style models should insert
// placeholder tokens equal to the feature size of the corresponding image with
// the image itself attached to and split across these tokens. When Forward is called
// a partial subset of these tokens may be submitted according to the batch size.
//
// This function is also responsible for updating MultimodalHash for any Multimodal
// that is modified to ensure that there is a unique hash value that accurately
// represents the contents.
PostTokenize([]input.Input) ([]input.Input, error)
}
// Base implements the common fields and methods for all models
type Base struct {
b ml.Backend
config
}
type config struct {
Cache kvcache.Cache
}
// Backend returns the underlying backend that will run the model
func (m *Base) Backend() ml.Backend {
return m.b
}
func (m *Base) Config() config {
return m.config
}
var models = make(map[string]func(fs.Config) (Model, error))
// Register registers a model constructor for the given architecture
func Register(name string, f func(fs.Config) (Model, error)) {
if _, ok := models[name]; ok {
panic("model: model already registered")
}
models[name] = f
}
// New initializes a new model instance with the provided configuration based on the metadata in the model file
func New(modelPath string, params ml.BackendParams) (Model, error) {
b, err := ml.NewBackend(modelPath, params)
if err != nil {
return nil, err
}
arch := b.Config().Architecture()
f, ok := models[arch]
if !ok {
return nil, fmt.Errorf("unsupported model architecture %q", arch)
}
m, err := f(b.Config())
if err != nil {
return nil, err
}
base := Base{b: b, config: m.Config()}
v := reflect.ValueOf(m)
v.Elem().Set(populateFields(base, v.Elem()))
return m, nil
}
func NewTextProcessor(s string) (TextProcessor, error) {
r, err := os.Open(s)
if err != nil {
return nil, err
}
defer r.Close()
meta, err := fsggml.Decode(r, -1)
if err != nil {
return nil, err
}
return getTextProcessor(meta.KV())
}
func getTextProcessor(kv fsggml.KV) (TextProcessor, error) {
arch := kv.Architecture()
f, ok := models[arch]
if !ok {
return nil, fmt.Errorf("unsupported model architecture %q", arch)
}
m, err := f(kv)
if err != nil {
return nil, err
}
tp, ok := m.(TextProcessor)
if !ok {
return nil, fmt.Errorf("%v is not a TextProcessor", m)
}
return tp, nil
}
func populateFields(base Base, v reflect.Value, tags ...Tag) reflect.Value {
t := v.Type()
if t.Kind() == reflect.Struct {
allNil := true
for i := range t.NumField() {
tt := t.Field(i).Type
vv := v.Field(i)
if !vv.CanSet() {
continue
}
// make a copy
tagsCopy := tags
if tag := t.Field(i).Tag.Get("gguf"); tag != "" {
tagsCopy = append(tagsCopy, ParseTags(tag))
}
if tt == reflect.TypeOf((*Base)(nil)).Elem() {
vv.Set(reflect.ValueOf(base))
} else if tt == reflect.TypeOf((*ml.Tensor)(nil)).Elem() {
var fn func([]Tag) [][]string
fn = func(tags []Tag) (values [][]string) {
if len(tags) < 1 {
return nil
}
values = [][]string{{tags[0].Name}}
for _, alt := range tags[0].Alternate {
values = append(values, []string{alt})
}
for i, value := range values {
for _, rest := range fn(tags[1:]) {
value = append(value, rest...)
}
values[i] = value
}
return values
}
names := fn(tagsCopy)
for _, name := range names {
if tensor := base.Backend().Get(strings.Join(name, ".")); tensor != nil {
slog.Log(context.TODO(), logutil.LevelTrace, "found tensor", "", tensor)
vv.Set(reflect.ValueOf(tensor))
break
}
}
} else if tt.Kind() == reflect.Pointer || tt.Kind() == reflect.Interface {
setPointer(base, vv, tagsCopy)
} else if tt.Kind() == reflect.Slice || tt.Kind() == reflect.Array {
for i := range vv.Len() {
vvv := vv.Index(i)
if vvv.Kind() == reflect.Pointer || vvv.Kind() == reflect.Interface {
setPointer(base, vvv, append(tagsCopy, Tag{Name: strconv.Itoa(i)}))
} else {
vvv.Set(populateFields(base, vvv, append(tagsCopy, Tag{Name: strconv.Itoa(i)})...))
}
}
}
if !canNil(tt) || !vv.IsNil() {
allNil = false
}
}
if allNil {
return reflect.Zero(t)
}
}
return v
}
func setPointer(base Base, v reflect.Value, tags []Tag) {
vv := v
if v.Kind() == reflect.Interface {
if v.IsNil() {
return
}
vv = vv.Elem()
}
vv = vv.Elem()
if v.IsNil() {
vv = reflect.New(v.Type().Elem()).Elem()
}
if f := populateFields(base, vv, tags...); f.CanAddr() {
v.Set(f.Addr())
}
}
type Tag struct {
Name string
Alternate []string
}
func ParseTags(s string) (tag Tag) {
parts := strings.Split(s, ",")
if len(parts) > 0 {
tag.Name = parts[0]
for _, part := range parts[1:] {
if value, ok := strings.CutPrefix(part, "alt:"); ok {
tag.Alternate = append(tag.Alternate, value)
}
}
}
return
}
func canNil(t reflect.Type) bool {
return t.Kind() == reflect.Chan ||
t.Kind() == reflect.Func ||
t.Kind() == reflect.Interface ||
t.Kind() == reflect.Map ||
t.Kind() == reflect.Pointer ||
t.Kind() == reflect.Slice
}
func Forward(ctx ml.Context, m Model, inputs []int32, batch input.Batch) (ml.Tensor, error) {
if len(batch.Positions) != len(batch.Sequences) {
return nil, fmt.Errorf("length of positions (%v) must match length of seqs (%v)", len(batch.Positions), len(batch.Sequences))
}
if len(batch.Positions) < 1 {
return nil, errors.New("batch size cannot be less than 1")
}
batch.Inputs = ctx.Input().FromIntSlice(inputs, len(inputs))
cache := m.Config().Cache
if cache != nil {
err := cache.StartForward(ctx, batch, false)
if err != nil {
return nil, err
}
}
t, err := m.Forward(ctx, batch)
if err != nil {
return nil, err
}
ctx.Forward(t).Compute(t)
return t, nil
}