mirror of
https://github.com/ollama/ollama.git
synced 2025-11-11 17:56:52 +01:00
* TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch
This will be redone once my branch is merged upstream in llama.cpp
* feat: Update all patches
There are a number that are no longer needed at all:
- 0003-embeddings: Embeddings entirely overhauled on master
- 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely
overhauled on master
- 0019-metal-add-mean-kernel-14267: Merged upstream
- 0020-CUDA-add-mean-operation-14313: Merged upstream
* feat: Sync llama.cpp and ggml
* fix: Update rsync-filter for all moved/new/removed files
* fix: Add files missing from sync
* fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs
* fix: Add ggml files missing from sync
* fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files
* fix: Remove mtmd main cpp files
* fix: Add missing include in sampling_ext.cpp
* fix: Update llama.go to use mtmd instead of clip/llava
* fix: Add patch for mtmd_input_text
* chore: Ignore *.patched in the patch directory
* fix: Fix support for arch-specific ggml-cpu source files with new arrangement
In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific
implementations were split out into a nested tree structure under
ggml-cpu/arch. This conflicts with standard CGO layout where all
arch-specific source files are expected to live in the same directory as
the parent go module and use suffixes based on GOOS and GOARCH. As such,
there were really two options for getting this to work:
1. Add a patch on top of the GGML sync to rearrange the files to match the
GO layout convention
2. Use CGO directives to conditionally include the nested source files in
the compilation units
This commit does (2) in order to minimize the set of changes needed on top
of the upstream file layout. To get this to work, there are two key things
needed:
1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in
the preprocessor directives
2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to
explicitly include the .c|.cpp files for the given architecture from the
nested directory
* fix: Use mtmd_helper to correctly load the bitmap for the image
* fix: Apply patch for mtmd_text_input
* fix: Add missing stb to llama.cpp rsync-filter
* fix: Add sync'ed stb vendored header
* fix: Use c++17 and include vendor for go wrapper modules
* fix: Update patch 0015 for upstream implementation of uuid
* feat: Bump to the latest tip of the branch
* fix: Update patches for bump
* feat: Bump back to the cenral repo and point at the latest master
This includes granite 4 and a number of other model architectures!
* fix: Revert changes to ggml export GPU UUID patch
* fix: Add patch for GGML_VERSION and GGML_COMMIT constants
* feat: Sync all patched code
* build: Include cmake/common.cmake in ggml sync
* build: Add top-level include for GNUINstallDirs in CMakeLists.txt
This is used to populate CMAKE_INSTALL_BINDIR
* fix: Add a patch to avoid power throttling API on non-msvc windows builds
* fix: Sync patch changes for ggml-cpu.c
* feat: Bump llama.cpp to 4a4f42
This picks up support for Kimi K2 and PLaMO-2
* feat: Sync llama.cpp
* fix: Handle multi-chunk image encodings from mtmd
* fix: Re-number patches after merge with `main`
* feat: Bump to 41e78c in the makefile
* fix: Fix Solar and argsort/copy patches after bump
* fix: Remove Gemma3n CUDA Graphs patch
It was implemented upstream:
https://github.com/ggml-org/llama.cpp/pull/14741
* feat: Sync llama.cpp / ggml after latest bump
* build: Remove unnecessary CFLAGS definitions in cpu.go
* fix: Remove unnecessary additions in the rsync-filter
* fix: Remove unused vendored code for chat template parsing
* Revert "fix: Remove Gemma3n CUDA Graphs patch"
This reverts commit d724caced3.
* fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes
https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394
* fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n
* unwind mxfp4 patch
Prepare to bump ggml with their impl for mxfp4
* bump
* fix windows build error
* Convert tensors at load time
Repack the mxfp4 tensors as ggmls kernels expect them to be.
* convert mlp bf16 to f32
* buffer the conversion better
* reshape earlier
* openai swiglu
* add ids
* split qkv, gate_up
* fix nested alt tags
* fast attention
* remove debug messages
* fix lint
* remove redundant test
* remap values only if source/target are different
* add back i32->i32 copy
* refactor cpu quants
* clean up vendor
* update patch instructions
* clean up patches
* remove webgpu
* update mem
* also handle gpt-oss
* revert convert changes
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
580 lines
21 KiB
C++
Vendored
580 lines
21 KiB
C++
Vendored
#include "sampling.h"
|
|
|
|
#include "common.h"
|
|
#include "log.h"
|
|
|
|
#include <cmath>
|
|
#include <unordered_map>
|
|
#include <algorithm>
|
|
|
|
// the ring buffer works similarly to std::deque, but with a fixed capacity
|
|
// TODO: deduplicate with llama-impl.h
|
|
template<typename T>
|
|
struct ring_buffer {
|
|
ring_buffer(size_t cap) : capacity(cap), data(cap) {}
|
|
|
|
T & front() {
|
|
if (sz == 0) {
|
|
throw std::runtime_error("ring buffer is empty");
|
|
}
|
|
return data[first];
|
|
}
|
|
|
|
const T & front() const {
|
|
if (sz == 0) {
|
|
throw std::runtime_error("ring buffer is empty");
|
|
}
|
|
return data[first];
|
|
}
|
|
|
|
T & back() {
|
|
if (sz == 0) {
|
|
throw std::runtime_error("ring buffer is empty");
|
|
}
|
|
return data[pos];
|
|
}
|
|
|
|
const T & back() const {
|
|
if (sz == 0) {
|
|
throw std::runtime_error("ring buffer is empty");
|
|
}
|
|
return data[pos];
|
|
}
|
|
|
|
void push_back(const T & value) {
|
|
if (sz == capacity) {
|
|
// advance the start when buffer is full
|
|
first = (first + 1) % capacity;
|
|
} else {
|
|
sz++;
|
|
}
|
|
data[pos] = value;
|
|
pos = (pos + 1) % capacity;
|
|
}
|
|
|
|
T pop_front() {
|
|
if (sz == 0) {
|
|
throw std::runtime_error("ring buffer is empty");
|
|
}
|
|
T value = data[first];
|
|
first = (first + 1) % capacity;
|
|
sz--;
|
|
return value;
|
|
}
|
|
|
|
const T & rat(size_t i) const {
|
|
if (i >= sz) {
|
|
throw std::runtime_error("ring buffer: index out of bounds");
|
|
}
|
|
return data[(first + sz - i - 1) % capacity];
|
|
}
|
|
|
|
std::vector<T> to_vector() const {
|
|
std::vector<T> result;
|
|
result.reserve(sz);
|
|
for (size_t i = 0; i < sz; i++) {
|
|
result.push_back(data[(first + i) % capacity]);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void clear() {
|
|
// here only reset the status of the buffer
|
|
sz = 0;
|
|
first = 0;
|
|
pos = 0;
|
|
}
|
|
|
|
bool empty() const {
|
|
return sz == 0;
|
|
}
|
|
|
|
size_t size() const {
|
|
return sz;
|
|
}
|
|
|
|
size_t capacity = 0;
|
|
size_t sz = 0;
|
|
size_t first = 0;
|
|
size_t pos = 0;
|
|
std::vector<T> data;
|
|
};
|
|
|
|
struct common_sampler {
|
|
common_params_sampling params;
|
|
|
|
struct llama_sampler * grmr;
|
|
struct llama_sampler * chain;
|
|
|
|
ring_buffer<llama_token> prev;
|
|
|
|
std::vector<llama_token_data> cur;
|
|
|
|
llama_token_data_array cur_p;
|
|
|
|
void set_logits(struct llama_context * ctx, int idx) {
|
|
const auto * logits = llama_get_logits_ith(ctx, idx);
|
|
|
|
const llama_model * model = llama_get_model(ctx);
|
|
const llama_vocab * vocab = llama_model_get_vocab(model);
|
|
|
|
const int n_vocab = llama_vocab_n_tokens(vocab);
|
|
|
|
cur.resize(n_vocab);
|
|
|
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
|
cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
|
|
}
|
|
|
|
cur_p = { cur.data(), cur.size(), -1, false };
|
|
}
|
|
};
|
|
|
|
std::string common_params_sampling::print() const {
|
|
char result[1024];
|
|
|
|
snprintf(result, sizeof(result),
|
|
"\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
|
|
"\tdry_multiplier = %.3f, dry_base = %.3f, dry_allowed_length = %d, dry_penalty_last_n = %d\n"
|
|
"\ttop_k = %d, top_p = %.3f, min_p = %.3f, xtc_probability = %.3f, xtc_threshold = %.3f, typical_p = %.3f, top_n_sigma = %.3f, temp = %.3f\n"
|
|
"\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
|
|
penalty_last_n, penalty_repeat, penalty_freq, penalty_present,
|
|
dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n,
|
|
top_k, top_p, min_p, xtc_probability, xtc_threshold, typ_p, top_n_sigma, temp,
|
|
mirostat, mirostat_eta, mirostat_tau);
|
|
|
|
return std::string(result);
|
|
}
|
|
|
|
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_params_sampling & params) {
|
|
const llama_vocab * vocab = llama_model_get_vocab(model);
|
|
|
|
llama_sampler_chain_params lparams = llama_sampler_chain_default_params();
|
|
|
|
lparams.no_perf = params.no_perf;
|
|
|
|
struct llama_sampler * grmr;
|
|
if (params.grammar.compare(0, 11, "%llguidance") == 0) {
|
|
#ifdef LLAMA_USE_LLGUIDANCE
|
|
grmr = llama_sampler_init_llg(vocab, "lark", params.grammar.c_str());
|
|
#else
|
|
GGML_ABORT("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled");
|
|
#endif // LLAMA_USE_LLGUIDANCE
|
|
} else {
|
|
std::vector<std::string> trigger_patterns;
|
|
std::vector<std::string> patterns_anywhere;
|
|
std::vector<llama_token> trigger_tokens;
|
|
for (const auto & trigger : params.grammar_triggers) {
|
|
switch (trigger.type) {
|
|
case COMMON_GRAMMAR_TRIGGER_TYPE_WORD:
|
|
{
|
|
const auto & word = trigger.value;
|
|
patterns_anywhere.push_back(regex_escape(word));
|
|
break;
|
|
}
|
|
case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN:
|
|
{
|
|
patterns_anywhere.push_back(trigger.value);
|
|
break;
|
|
}
|
|
case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL:
|
|
{
|
|
trigger_patterns.push_back(trigger.value);
|
|
break;
|
|
}
|
|
case COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN:
|
|
{
|
|
const auto token = trigger.token;
|
|
trigger_tokens.push_back(token);
|
|
break;
|
|
}
|
|
default:
|
|
GGML_ASSERT(false && "unknown trigger type");
|
|
}
|
|
}
|
|
|
|
if (!patterns_anywhere.empty()) {
|
|
trigger_patterns.push_back("^[\\s\\S]*?(" + string_join(patterns_anywhere, "|") + ")[\\s\\S]*");
|
|
}
|
|
|
|
std::vector<const char *> trigger_patterns_c;
|
|
trigger_patterns_c.reserve(trigger_patterns.size());
|
|
for (const auto & regex : trigger_patterns) {
|
|
trigger_patterns_c.push_back(regex.c_str());
|
|
}
|
|
|
|
grmr = params.grammar_lazy
|
|
? llama_sampler_init_grammar_lazy_patterns(vocab, params.grammar.c_str(), "root",
|
|
trigger_patterns_c.data(), trigger_patterns_c.size(),
|
|
trigger_tokens.data(), trigger_tokens.size())
|
|
: llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root");
|
|
if (!grmr) {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
auto * result = new common_sampler {
|
|
/* .params = */ params,
|
|
/* .grmr = */ grmr,
|
|
/* .chain = */ llama_sampler_chain_init(lparams),
|
|
/* .prev = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
|
|
/* .cur = */ {},
|
|
/* .cur_p = */ {},
|
|
};
|
|
|
|
llama_sampler_chain_add(result->chain,
|
|
llama_sampler_init_logit_bias(
|
|
llama_vocab_n_tokens(vocab),
|
|
params.logit_bias.size(),
|
|
params.logit_bias.data()));
|
|
|
|
if (params.mirostat == 0) {
|
|
for (const auto & cnstr : params.samplers) {
|
|
switch (cnstr) {
|
|
case COMMON_SAMPLER_TYPE_DRY:
|
|
{
|
|
std::vector<const char *> c_breakers;
|
|
c_breakers.reserve(params.dry_sequence_breakers.size());
|
|
for (const auto & str : params.dry_sequence_breakers) {
|
|
c_breakers.push_back(str.c_str());
|
|
}
|
|
|
|
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
|
|
}
|
|
break;
|
|
case COMMON_SAMPLER_TYPE_TOP_K:
|
|
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
|
break;
|
|
case COMMON_SAMPLER_TYPE_TOP_P:
|
|
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
|
|
break;
|
|
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA:
|
|
llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
|
|
break;
|
|
case COMMON_SAMPLER_TYPE_MIN_P:
|
|
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
|
|
break;
|
|
case COMMON_SAMPLER_TYPE_XTC:
|
|
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
|
|
break;
|
|
case COMMON_SAMPLER_TYPE_TYPICAL_P:
|
|
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
|
|
break;
|
|
case COMMON_SAMPLER_TYPE_TEMPERATURE:
|
|
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
|
|
break;
|
|
case COMMON_SAMPLER_TYPE_INFILL:
|
|
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
|
|
break;
|
|
case COMMON_SAMPLER_TYPE_PENALTIES:
|
|
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties (params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
|
|
break;
|
|
default:
|
|
GGML_ASSERT(false && "unknown sampler type");
|
|
}
|
|
}
|
|
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
|
|
} else if (params.mirostat == 1) {
|
|
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
|
|
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_vocab_n_tokens(vocab), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
|
|
} else if (params.mirostat == 2) {
|
|
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
|
|
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
|
|
} else {
|
|
GGML_ASSERT(false && "unknown mirostat version");
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void common_sampler_free(struct common_sampler * gsmpl) {
|
|
if (gsmpl) {
|
|
llama_sampler_free(gsmpl->grmr);
|
|
|
|
llama_sampler_free(gsmpl->chain);
|
|
|
|
delete gsmpl;
|
|
}
|
|
}
|
|
|
|
void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, bool accept_grammar) {
|
|
if (accept_grammar) {
|
|
llama_sampler_accept(gsmpl->grmr, token);
|
|
}
|
|
|
|
llama_sampler_accept(gsmpl->chain, token);
|
|
|
|
gsmpl->prev.push_back(token);
|
|
}
|
|
|
|
void common_sampler_reset(struct common_sampler * gsmpl) {
|
|
llama_sampler_reset(gsmpl->grmr);
|
|
|
|
llama_sampler_reset(gsmpl->chain);
|
|
}
|
|
|
|
struct common_sampler * common_sampler_clone(common_sampler * gsmpl) {
|
|
return new common_sampler {
|
|
/* .params = */ gsmpl->params,
|
|
/* .grmr = */ llama_sampler_clone(gsmpl->grmr),
|
|
/* .chain = */ llama_sampler_clone(gsmpl->chain),
|
|
/* .prev = */ gsmpl->prev,
|
|
/* .cur = */ gsmpl->cur,
|
|
/* .cur_p = */ gsmpl->cur_p,
|
|
};
|
|
}
|
|
|
|
void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl) {
|
|
// TODO: measure grammar performance
|
|
|
|
if (gsmpl) {
|
|
llama_perf_sampler_print(gsmpl->chain);
|
|
}
|
|
if (ctx) {
|
|
llama_perf_context_print(ctx);
|
|
}
|
|
}
|
|
|
|
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
|
|
gsmpl->set_logits(ctx, idx);
|
|
|
|
auto & grmr = gsmpl->grmr;
|
|
auto & chain = gsmpl->chain;
|
|
auto & cur_p = gsmpl->cur_p; // initialized by set_logits
|
|
|
|
if (grammar_first) {
|
|
llama_sampler_apply(grmr, &cur_p);
|
|
}
|
|
|
|
llama_sampler_apply(chain, &cur_p);
|
|
|
|
GGML_ASSERT(cur_p.selected != -1 && "no selected token during sampling - check your sampling configuration");
|
|
|
|
const llama_token id = cur_p.data[cur_p.selected].id;
|
|
|
|
if (grammar_first) {
|
|
return id;
|
|
}
|
|
|
|
// check if it the sampled token fits the grammar
|
|
{
|
|
llama_token_data single_token_data = { id, 1.0f, 0.0f };
|
|
llama_token_data_array single_token_data_array = { &single_token_data, 1, -1, false };
|
|
|
|
llama_sampler_apply(grmr, &single_token_data_array);
|
|
|
|
const bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
|
|
if (is_valid) {
|
|
return id;
|
|
}
|
|
}
|
|
|
|
// resampling:
|
|
// if the token is not valid, sample again, but first apply the grammar sampler and then the sampling chain
|
|
gsmpl->set_logits(ctx, idx);
|
|
|
|
llama_sampler_apply(grmr, &cur_p);
|
|
llama_sampler_apply(chain, &cur_p);
|
|
|
|
GGML_ASSERT(cur_p.selected != -1 && "no selected token during re-sampling - check your sampling configuration");
|
|
|
|
return cur_p.data[cur_p.selected].id;
|
|
}
|
|
|
|
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft, bool grammar_first) {
|
|
GGML_ASSERT(idxs.size() == draft.size() + 1 && "idxs.size() must be draft.size() + 1");
|
|
|
|
std::vector<llama_token> result;
|
|
result.reserve(idxs.size());
|
|
|
|
size_t i = 0;
|
|
for (; i < draft.size(); i++) {
|
|
const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);
|
|
|
|
common_sampler_accept(gsmpl, id, true);
|
|
|
|
result.push_back(id);
|
|
|
|
if (draft[i] != id) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i == draft.size()) {
|
|
const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);
|
|
|
|
common_sampler_accept(gsmpl, id, true);
|
|
|
|
result.push_back(id);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft, bool grammar_first) {
|
|
std::vector<int> idxs(draft.size() + 1);
|
|
for (size_t i = 0; i < idxs.size(); ++i) {
|
|
idxs[i] = i;
|
|
}
|
|
|
|
return common_sampler_sample_and_accept_n(gsmpl, ctx, idxs, draft, grammar_first);
|
|
}
|
|
|
|
uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
|
|
return llama_sampler_get_seed(gsmpl->chain);
|
|
}
|
|
|
|
// helpers
|
|
|
|
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl) {
|
|
return &gsmpl->cur_p;
|
|
}
|
|
|
|
llama_token common_sampler_last(const struct common_sampler * gsmpl) {
|
|
return gsmpl->prev.rat(0);
|
|
}
|
|
|
|
std::string common_sampler_print(const struct common_sampler * gsmpl) {
|
|
std::string result = "logits ";
|
|
|
|
for (int i = 0; i < llama_sampler_chain_n(gsmpl->chain); i++) {
|
|
const auto * smpl = llama_sampler_chain_get(gsmpl->chain, i);
|
|
result += std::string("-> ") + llama_sampler_name(smpl) + " ";
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
std::string common_sampler_prev_str(common_sampler * gsmpl, llama_context * ctx_main, int n) {
|
|
n = std::min(n, (int) gsmpl->prev.size());
|
|
|
|
if (n <= 0) {
|
|
return "";
|
|
}
|
|
|
|
std::string result;
|
|
result.reserve(8*n); // 8 is the average length of a token [citation needed], TODO: compute this from the vocab
|
|
|
|
for (int i = n - 1; i >= 0; i--) {
|
|
const llama_token id = gsmpl->prev.rat(i);
|
|
|
|
GGML_ASSERT(id != LLAMA_TOKEN_NULL && "null token in the sampling history - should not happen");
|
|
|
|
result += common_token_to_piece(ctx_main, id);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
char common_sampler_type_to_chr(enum common_sampler_type cnstr) {
|
|
switch (cnstr) {
|
|
case COMMON_SAMPLER_TYPE_DRY: return 'd';
|
|
case COMMON_SAMPLER_TYPE_TOP_K: return 'k';
|
|
case COMMON_SAMPLER_TYPE_TYPICAL_P: return 'y';
|
|
case COMMON_SAMPLER_TYPE_TOP_P: return 'p';
|
|
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA: return 's';
|
|
case COMMON_SAMPLER_TYPE_MIN_P: return 'm';
|
|
case COMMON_SAMPLER_TYPE_TEMPERATURE: return 't';
|
|
case COMMON_SAMPLER_TYPE_XTC: return 'x';
|
|
case COMMON_SAMPLER_TYPE_INFILL: return 'i';
|
|
case COMMON_SAMPLER_TYPE_PENALTIES: return 'e';
|
|
default : return '?';
|
|
}
|
|
}
|
|
|
|
std::string common_sampler_type_to_str(enum common_sampler_type cnstr) {
|
|
switch (cnstr) {
|
|
case COMMON_SAMPLER_TYPE_DRY: return "dry";
|
|
case COMMON_SAMPLER_TYPE_TOP_K: return "top_k";
|
|
case COMMON_SAMPLER_TYPE_TYPICAL_P: return "typ_p";
|
|
case COMMON_SAMPLER_TYPE_TOP_P: return "top_p";
|
|
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA: return "top_n_sigma";
|
|
case COMMON_SAMPLER_TYPE_MIN_P: return "min_p";
|
|
case COMMON_SAMPLER_TYPE_TEMPERATURE: return "temperature";
|
|
case COMMON_SAMPLER_TYPE_XTC: return "xtc";
|
|
case COMMON_SAMPLER_TYPE_INFILL: return "infill";
|
|
case COMMON_SAMPLER_TYPE_PENALTIES: return "penalties";
|
|
default : return "";
|
|
}
|
|
}
|
|
|
|
std::vector<common_sampler_type> common_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
|
|
std::unordered_map<std::string, common_sampler_type> sampler_canonical_name_map {
|
|
{ "dry", COMMON_SAMPLER_TYPE_DRY },
|
|
{ "top_k", COMMON_SAMPLER_TYPE_TOP_K },
|
|
{ "top_p", COMMON_SAMPLER_TYPE_TOP_P },
|
|
{ "top_n_sigma", COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
|
|
{ "typ_p", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
|
{ "min_p", COMMON_SAMPLER_TYPE_MIN_P },
|
|
{ "temperature", COMMON_SAMPLER_TYPE_TEMPERATURE },
|
|
{ "xtc", COMMON_SAMPLER_TYPE_XTC },
|
|
{ "infill", COMMON_SAMPLER_TYPE_INFILL },
|
|
{ "penalties", COMMON_SAMPLER_TYPE_PENALTIES },
|
|
};
|
|
|
|
// since samplers names are written multiple ways
|
|
// make it ready for both system names and input names
|
|
std::unordered_map<std::string, common_sampler_type> sampler_alt_name_map {
|
|
{ "top-k", COMMON_SAMPLER_TYPE_TOP_K },
|
|
{ "top-p", COMMON_SAMPLER_TYPE_TOP_P },
|
|
{ "top-n-sigma", COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
|
|
{ "nucleus", COMMON_SAMPLER_TYPE_TOP_P },
|
|
{ "typical-p", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
|
{ "typical", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
|
{ "typ-p", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
|
{ "typ", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
|
{ "min-p", COMMON_SAMPLER_TYPE_MIN_P },
|
|
{ "temp", COMMON_SAMPLER_TYPE_TEMPERATURE },
|
|
};
|
|
|
|
std::vector<common_sampler_type> samplers;
|
|
samplers.reserve(names.size());
|
|
|
|
for (const auto & name : names) {
|
|
auto sampler = sampler_canonical_name_map.find(name);
|
|
if (sampler != sampler_canonical_name_map.end()) {
|
|
samplers.push_back(sampler->second);
|
|
continue;
|
|
}
|
|
if (allow_alt_names) {
|
|
sampler = sampler_alt_name_map.find(name);
|
|
if (sampler != sampler_alt_name_map.end()) {
|
|
samplers.push_back(sampler->second);
|
|
continue;
|
|
}
|
|
}
|
|
LOG_WRN("%s: unable to match sampler by name '%s'\n", __func__, name.c_str());
|
|
}
|
|
|
|
return samplers;
|
|
}
|
|
|
|
std::vector<common_sampler_type> common_sampler_types_from_chars(const std::string & chars) {
|
|
std::unordered_map<char, common_sampler_type> sampler_name_map = {
|
|
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_DRY), COMMON_SAMPLER_TYPE_DRY },
|
|
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_K), COMMON_SAMPLER_TYPE_TOP_K },
|
|
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TYPICAL_P), COMMON_SAMPLER_TYPE_TYPICAL_P },
|
|
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_P), COMMON_SAMPLER_TYPE_TOP_P },
|
|
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_N_SIGMA), COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
|
|
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_MIN_P), COMMON_SAMPLER_TYPE_MIN_P },
|
|
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TEMPERATURE), COMMON_SAMPLER_TYPE_TEMPERATURE },
|
|
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_XTC), COMMON_SAMPLER_TYPE_XTC },
|
|
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_INFILL), COMMON_SAMPLER_TYPE_INFILL },
|
|
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_PENALTIES), COMMON_SAMPLER_TYPE_PENALTIES },
|
|
};
|
|
|
|
std::vector<common_sampler_type> samplers;
|
|
samplers.reserve(chars.size());
|
|
|
|
for (const auto & c : chars) {
|
|
const auto sampler = sampler_name_map.find(c);
|
|
if (sampler != sampler_name_map.end()) {
|
|
samplers.push_back(sampler->second);
|
|
} else {
|
|
LOG_WRN("%s: unable to match sampler by char '%c'\n", __func__, c);
|
|
}
|
|
}
|
|
|
|
return samplers;
|
|
}
|