mirror of
https://github.com/ollama/ollama.git
synced 2025-10-10 09:23:42 +02:00
The context must always be able to store the current batch, so if the user requests a small context then we should also shrink the batch to match. This also fixes the TestLongInputContext test on the new engine. (The old engine already has this behavior.)
1781 lines
53 KiB
Go
1781 lines
53 KiB
Go
package llm
|
|
|
|
import (
|
|
"bufio"
|
|
"bytes"
|
|
"context"
|
|
"encoding/json"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"log"
|
|
"log/slog"
|
|
"math/rand"
|
|
"net"
|
|
"net/http"
|
|
"os"
|
|
"os/exec"
|
|
"path/filepath"
|
|
"runtime"
|
|
"slices"
|
|
"sort"
|
|
"strconv"
|
|
"strings"
|
|
"sync"
|
|
"time"
|
|
|
|
"golang.org/x/sync/semaphore"
|
|
|
|
"github.com/ollama/ollama/api"
|
|
"github.com/ollama/ollama/discover"
|
|
"github.com/ollama/ollama/envconfig"
|
|
"github.com/ollama/ollama/format"
|
|
"github.com/ollama/ollama/fs/ggml"
|
|
"github.com/ollama/ollama/llama"
|
|
"github.com/ollama/ollama/logutil"
|
|
"github.com/ollama/ollama/ml"
|
|
"github.com/ollama/ollama/model"
|
|
)
|
|
|
|
type filteredEnv []string
|
|
|
|
func (e filteredEnv) LogValue() slog.Value {
|
|
var attrs []slog.Attr
|
|
for _, env := range e {
|
|
if key, value, ok := strings.Cut(env, "="); ok {
|
|
switch {
|
|
case strings.HasPrefix(key, "OLLAMA_"),
|
|
strings.HasPrefix(key, "CUDA_"),
|
|
strings.HasPrefix(key, "ROCR_"),
|
|
strings.HasPrefix(key, "ROCM_"),
|
|
strings.HasPrefix(key, "HIP_"),
|
|
strings.HasPrefix(key, "GPU_"),
|
|
strings.HasPrefix(key, "HSA_"),
|
|
strings.HasPrefix(key, "GGML_"),
|
|
slices.Contains([]string{
|
|
"PATH",
|
|
"LD_LIBRARY_PATH",
|
|
"DYLD_LIBRARY_PATH",
|
|
}, key):
|
|
attrs = append(attrs, slog.String(key, value))
|
|
}
|
|
}
|
|
}
|
|
return slog.GroupValue(attrs...)
|
|
}
|
|
|
|
type LlamaServer interface {
|
|
ModelPath() string
|
|
Load(ctx context.Context, gpus discover.GpuInfoList, requireFull bool) error
|
|
Ping(ctx context.Context) error
|
|
WaitUntilRunning(ctx context.Context) error
|
|
Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error
|
|
Embedding(ctx context.Context, input string) ([]float32, error)
|
|
Tokenize(ctx context.Context, content string) ([]int, error)
|
|
Detokenize(ctx context.Context, tokens []int) (string, error)
|
|
Close() error
|
|
VRAMSize() uint64 // Total VRAM across all GPUs
|
|
TotalSize() uint64
|
|
VRAMByGPU(gpuID string) uint64
|
|
Pid() int
|
|
}
|
|
|
|
// llmServer is an instance of a runner hosting a single model
|
|
type llmServer struct {
|
|
port int
|
|
cmd *exec.Cmd
|
|
done chan error // Channel to signal when the process exits
|
|
status *StatusWriter
|
|
options api.Options
|
|
numParallel int
|
|
modelPath string
|
|
|
|
loadRequest LoadRequest // Parameters used to initialize the runner
|
|
|
|
// llamaModel is an instance of the cgo llama.cpp model definition
|
|
// nil if this server is running the new engine
|
|
llamaModel *llama.Model
|
|
llamaModelLock *sync.Mutex
|
|
|
|
// textProcessor handles text encoding/decoding for the model in the Ollama engine
|
|
// nil if this server is running the llama.cpp based engine
|
|
textProcessor model.TextProcessor
|
|
|
|
totalLayers uint64
|
|
loadStart time.Time // Record how long it took the model to load
|
|
loadProgress float32
|
|
|
|
sem *semaphore.Weighted
|
|
}
|
|
|
|
type llamaServer struct {
|
|
llmServer
|
|
|
|
ggml *ggml.GGML
|
|
gpus discover.GpuInfoList // The set of GPUs covered by the memory estimate
|
|
estimate MemoryEstimate
|
|
}
|
|
|
|
type ollamaServer struct {
|
|
llmServer
|
|
|
|
mem *ml.BackendMemory
|
|
}
|
|
|
|
// LoadModel will load a model from disk. The model must be in the GGML format.
|
|
//
|
|
// It collects array values for arrays with a size less than or equal to
|
|
// maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
|
|
// the maxArraySize is negative, all arrays are collected.
|
|
func LoadModel(model string, maxArraySize int) (*ggml.GGML, error) {
|
|
if _, err := os.Stat(model); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
f, err := os.Open(model)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
defer f.Close()
|
|
|
|
ggml, err := ggml.Decode(f, maxArraySize)
|
|
return ggml, err
|
|
}
|
|
|
|
// NewLlamaServer will run a server for the given GPUs
|
|
func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, adapters, projectors []string, opts api.Options, numParallel int) (LlamaServer, error) {
|
|
var llamaModel *llama.Model
|
|
var textProcessor model.TextProcessor
|
|
var err error
|
|
if envconfig.NewEngine() || f.KV().OllamaEngineRequired() {
|
|
textProcessor, err = model.NewTextProcessor(modelPath)
|
|
if err != nil {
|
|
// To prepare for opt-out mode, instead of treating this as an error, we fallback to the old runner
|
|
slog.Debug("model not yet supported by Ollama engine, switching to compatibility mode", "model", modelPath, "error", err)
|
|
}
|
|
}
|
|
if textProcessor == nil {
|
|
llamaModel, err = llama.LoadModelFromFile(modelPath, llama.ModelParams{VocabOnly: true})
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
newEstimates := textProcessor != nil && envconfig.NewMemoryEstimates()
|
|
if newEstimates {
|
|
slog.Info("enabling new memory estimates")
|
|
}
|
|
|
|
// Verify the requested context size is <= the model training size
|
|
trainCtx := f.KV().ContextLength()
|
|
if opts.NumCtx > int(trainCtx) && trainCtx > 0 {
|
|
slog.Warn("requested context size too large for model", "num_ctx", opts.NumCtx, "n_ctx_train", trainCtx)
|
|
opts.NumCtx = int(trainCtx)
|
|
}
|
|
|
|
opts.NumBatch = min(opts.NumBatch, opts.NumCtx)
|
|
|
|
loadRequest := LoadRequest{LoraPath: adapters, KvSize: opts.NumCtx * numParallel, BatchSize: opts.NumBatch, Parallel: numParallel, MultiUserCache: envconfig.MultiUserCache()}
|
|
|
|
defaultThreads := discover.GetSystemInfo().GetOptimalThreadCount()
|
|
if opts.NumThread > 0 {
|
|
loadRequest.NumThreads = opts.NumThread
|
|
} else if defaultThreads > 0 {
|
|
loadRequest.NumThreads = defaultThreads
|
|
}
|
|
|
|
// TODO - NUMA support currently doesn't work properly
|
|
|
|
if opts.MainGPU > 0 {
|
|
loadRequest.MainGPU = opts.MainGPU
|
|
}
|
|
|
|
if len(projectors) > 0 && llamaModel != nil {
|
|
loadRequest.ProjectorPath = projectors[0]
|
|
}
|
|
|
|
// This will disable flash attention unless all GPUs on the system support it, even if we end up selecting a subset
|
|
// that can handle it.
|
|
fa := envconfig.FlashAttention()
|
|
if f.FlashAttention() {
|
|
slog.Info("model wants flash attention")
|
|
fa = true
|
|
}
|
|
|
|
if fa && !gpus.FlashAttentionSupported() {
|
|
slog.Warn("flash attention enabled but not supported by gpu")
|
|
fa = false
|
|
}
|
|
|
|
if fa && !f.SupportsFlashAttention() {
|
|
slog.Warn("flash attention enabled but not supported by model")
|
|
fa = false
|
|
}
|
|
|
|
kvct := strings.ToLower(envconfig.KvCacheType())
|
|
|
|
if fa {
|
|
slog.Info("enabling flash attention")
|
|
loadRequest.FlashAttention = true
|
|
|
|
// Flash Attention also supports kv cache quantization
|
|
// Enable if the requested and kv cache type is supported by the model
|
|
if kvct != "" && f.SupportsKVCacheType(kvct) {
|
|
loadRequest.KvCacheType = kvct
|
|
} else {
|
|
slog.Warn("kv cache type not supported by model", "type", kvct)
|
|
}
|
|
} else if kvct != "" && kvct != "f16" {
|
|
slog.Warn("quantized kv cache requested but flash attention disabled", "type", kvct)
|
|
}
|
|
|
|
availableLibs := make(map[string]string)
|
|
if entries, err := os.ReadDir(discover.LibOllamaPath); err == nil {
|
|
for _, entry := range entries {
|
|
availableLibs[entry.Name()] = filepath.Join(discover.LibOllamaPath, entry.Name())
|
|
}
|
|
}
|
|
|
|
var gpuLibs []string
|
|
for _, gpu := range gpus {
|
|
gpuLibs = append(gpuLibs, gpu.RunnerName())
|
|
}
|
|
|
|
requested := envconfig.LLMLibrary()
|
|
if availableLibs[requested] != "" {
|
|
slog.Info("using requested gpu library", "requested", requested)
|
|
gpuLibs = []string{requested}
|
|
}
|
|
|
|
var compatible []string
|
|
for _, gpuLib := range gpuLibs {
|
|
var matchingLibs []string
|
|
for k := range availableLibs {
|
|
// exact match first
|
|
if k == gpuLib {
|
|
matchingLibs = append([]string{k}, matchingLibs...)
|
|
continue
|
|
}
|
|
|
|
// then match the family (e.g. 'cuda')
|
|
if strings.Split(k, "_")[0] == strings.Split(gpuLib, "_")[0] {
|
|
matchingLibs = append(matchingLibs, k)
|
|
}
|
|
}
|
|
|
|
if len(matchingLibs) > 0 {
|
|
compatible = append(compatible, matchingLibs[0])
|
|
}
|
|
}
|
|
|
|
exe, err := os.Executable()
|
|
if err != nil {
|
|
return nil, fmt.Errorf("unable to lookup executable path: %w", err)
|
|
}
|
|
|
|
if eval, err := filepath.EvalSymlinks(exe); err == nil {
|
|
exe = eval
|
|
}
|
|
|
|
// iterate through compatible GPU libraries such as 'cuda_v12', 'rocm', etc.
|
|
// adding each library's respective path to the LD_LIBRARY_PATH, until finally running
|
|
// without any LD_LIBRARY_PATH flags
|
|
for {
|
|
port := 0
|
|
if a, err := net.ResolveTCPAddr("tcp", "localhost:0"); err == nil {
|
|
var l *net.TCPListener
|
|
if l, err = net.ListenTCP("tcp", a); err == nil {
|
|
port = l.Addr().(*net.TCPAddr).Port
|
|
l.Close()
|
|
}
|
|
}
|
|
if port == 0 {
|
|
slog.Debug("ResolveTCPAddr failed, using random port")
|
|
port = rand.Intn(65535-49152) + 49152 // get a random port in the ephemeral range
|
|
}
|
|
params := []string{"runner"}
|
|
if textProcessor != nil {
|
|
// New engine
|
|
// TODO - if we have failure to load scenarios, add logic to retry with the old runner
|
|
params = append(params, "--ollama-engine")
|
|
}
|
|
params = append(params, "--model", modelPath)
|
|
params = append(params, "--port", strconv.Itoa(port))
|
|
|
|
var pathEnv string
|
|
switch runtime.GOOS {
|
|
case "windows":
|
|
pathEnv = "PATH"
|
|
case "darwin":
|
|
pathEnv = "DYLD_LIBRARY_PATH"
|
|
default:
|
|
pathEnv = "LD_LIBRARY_PATH"
|
|
}
|
|
|
|
// Note: we always put our dependency paths first
|
|
// since these are the exact version we compiled/linked against
|
|
libraryPaths := []string{discover.LibOllamaPath}
|
|
if libraryPath, ok := os.LookupEnv(pathEnv); ok {
|
|
libraryPaths = append(libraryPaths, filepath.SplitList(libraryPath)...)
|
|
}
|
|
|
|
ggmlPaths := []string{discover.LibOllamaPath}
|
|
for _, c := range compatible {
|
|
if libpath, ok := availableLibs[c]; ok {
|
|
slog.Debug("adding gpu library", "path", libpath)
|
|
libraryPaths = append([]string{libpath}, libraryPaths...)
|
|
ggmlPaths = append(ggmlPaths, libpath)
|
|
}
|
|
}
|
|
|
|
for _, gpu := range gpus {
|
|
if gpu.DependencyPath != nil {
|
|
slog.Debug("adding gpu dependency paths", "paths", gpu.DependencyPath)
|
|
libraryPaths = append(gpu.DependencyPath, libraryPaths...)
|
|
}
|
|
}
|
|
|
|
// finally, add the root library path
|
|
libraryPaths = append(libraryPaths, discover.LibOllamaPath)
|
|
|
|
s := llmServer{
|
|
port: port,
|
|
cmd: exec.Command(exe, params...),
|
|
status: NewStatusWriter(os.Stderr),
|
|
options: opts,
|
|
modelPath: modelPath,
|
|
loadRequest: loadRequest,
|
|
llamaModel: llamaModel,
|
|
llamaModelLock: &sync.Mutex{},
|
|
textProcessor: textProcessor,
|
|
numParallel: numParallel,
|
|
sem: semaphore.NewWeighted(int64(numParallel)),
|
|
totalLayers: f.KV().BlockCount() + 1,
|
|
loadStart: time.Now(),
|
|
done: make(chan error, 1),
|
|
}
|
|
|
|
s.cmd.Env = os.Environ()
|
|
s.cmd.Stdout = os.Stdout
|
|
s.cmd.Stderr = s.status
|
|
s.cmd.SysProcAttr = LlamaServerSysProcAttr
|
|
|
|
s.cmd.Env = append(s.cmd.Env, "OLLAMA_LIBRARY_PATH="+strings.Join(ggmlPaths, string(filepath.ListSeparator)))
|
|
|
|
envWorkarounds := []string{}
|
|
for _, gpu := range gpus {
|
|
envWorkarounds = append(envWorkarounds, gpu.EnvWorkarounds...)
|
|
}
|
|
// Always filter down the set of GPUs in case there are any unsupported devices that might crash
|
|
envWorkarounds = append(envWorkarounds, gpus.GetVisibleDevicesEnv()...)
|
|
pathEnvVal := strings.Join(libraryPaths, string(filepath.ListSeparator))
|
|
|
|
// Update or add the path variable with our adjusted version
|
|
pathNeeded := true
|
|
envWorkaroundDone := make([]bool, len(envWorkarounds))
|
|
for i := range s.cmd.Env {
|
|
cmp := strings.SplitN(s.cmd.Env[i], "=", 2)
|
|
if strings.EqualFold(cmp[0], pathEnv) {
|
|
s.cmd.Env[i] = pathEnv + "=" + pathEnvVal
|
|
pathNeeded = false
|
|
} else if len(envWorkarounds) != 0 {
|
|
for j, kv := range envWorkarounds {
|
|
tmp := strings.SplitN(kv, "=", 2)
|
|
if strings.EqualFold(cmp[0], tmp[0]) {
|
|
s.cmd.Env[i] = kv
|
|
envWorkaroundDone[j] = true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if pathNeeded {
|
|
s.cmd.Env = append(s.cmd.Env, pathEnv+"="+pathEnvVal)
|
|
}
|
|
for i, done := range envWorkaroundDone {
|
|
if !done {
|
|
s.cmd.Env = append(s.cmd.Env, envWorkarounds[i])
|
|
}
|
|
}
|
|
|
|
slog.Info("starting runner", "cmd", s.cmd)
|
|
slog.Debug("subprocess", "", filteredEnv(s.cmd.Env))
|
|
|
|
if err = s.cmd.Start(); err != nil {
|
|
var msg string
|
|
if s.status != nil && s.status.LastErrMsg != "" {
|
|
msg = s.status.LastErrMsg
|
|
}
|
|
err := fmt.Errorf("error starting runner: %v %s", err, msg)
|
|
if len(compatible) == 0 {
|
|
if llamaModel != nil {
|
|
llama.FreeModel(llamaModel)
|
|
}
|
|
return nil, err
|
|
}
|
|
|
|
slog.Warn("unable to start runner with compatible gpu", "error", err, "compatible", compatible)
|
|
compatible = compatible[1:]
|
|
continue
|
|
}
|
|
|
|
// reap subprocess when it exits
|
|
go func() {
|
|
err := s.cmd.Wait()
|
|
// Favor a more detailed message over the process exit status
|
|
if err != nil && s.status != nil && s.status.LastErrMsg != "" {
|
|
slog.Error("llama runner terminated", "error", err)
|
|
if strings.Contains(s.status.LastErrMsg, "unknown model") {
|
|
s.status.LastErrMsg = "this model is not supported by your version of Ollama. You may need to upgrade"
|
|
}
|
|
s.done <- errors.New(s.status.LastErrMsg)
|
|
} else {
|
|
s.done <- err
|
|
}
|
|
}()
|
|
|
|
if newEstimates {
|
|
return &ollamaServer{llmServer: s}, nil
|
|
} else {
|
|
return &llamaServer{llmServer: s, ggml: f}, nil
|
|
}
|
|
}
|
|
}
|
|
|
|
func (s *llmServer) ModelPath() string {
|
|
return s.modelPath
|
|
}
|
|
|
|
type LoadOperation int
|
|
|
|
// The order of these constants are significant because we iterate over the operations. They
|
|
// should be in order of increasingly loading the model.
|
|
const (
|
|
LoadOperationFit LoadOperation = iota // Return memory requirements but do not allocate
|
|
LoadOperationAlloc // Allocate memory but do not load the weights
|
|
LoadOperationCommit // Load weights - further changes cannot be made after this
|
|
LoadOperationClose // Close model and free memory
|
|
)
|
|
|
|
func (o LoadOperation) String() string {
|
|
switch o {
|
|
case LoadOperationFit:
|
|
return "fit"
|
|
case LoadOperationAlloc:
|
|
return "alloc"
|
|
case LoadOperationCommit:
|
|
return "commit"
|
|
case LoadOperationClose:
|
|
return "close"
|
|
default:
|
|
return "unknown"
|
|
}
|
|
}
|
|
|
|
type LoadRequest struct {
|
|
Operation LoadOperation
|
|
|
|
LoraPath []string
|
|
Parallel int
|
|
BatchSize int
|
|
FlashAttention bool
|
|
KvSize int
|
|
KvCacheType string
|
|
NumThreads int
|
|
GPULayers ml.GPULayersList
|
|
MultiUserCache bool
|
|
|
|
// Legacy fields - not used with the Ollama engine
|
|
ProjectorPath string
|
|
MainGPU int
|
|
UseMmap bool
|
|
}
|
|
|
|
type LoadResponse struct {
|
|
Success bool
|
|
Memory ml.BackendMemory
|
|
}
|
|
|
|
var ErrLoadRequiredFull = errors.New("unable to load full model on GPU")
|
|
|
|
func (s *llamaServer) Load(ctx context.Context, gpus discover.GpuInfoList, requireFull bool) error {
|
|
systemInfo := discover.GetSystemInfo()
|
|
systemTotalMemory := systemInfo.System.TotalMemory
|
|
systemFreeMemory := systemInfo.System.FreeMemory
|
|
systemSwapFreeMemory := systemInfo.System.FreeSwap
|
|
slog.Info("system memory", "total", format.HumanBytes2(systemTotalMemory), "free", format.HumanBytes2(systemFreeMemory), "free_swap", format.HumanBytes2(systemSwapFreeMemory))
|
|
|
|
g := pickBestFullFitByLibrary(s.ggml, s.modelPath, []string{s.loadRequest.ProjectorPath}, s.loadRequest.LoraPath, s.options, gpus, s.numParallel)
|
|
if g == nil {
|
|
if !requireFull {
|
|
g = pickBestPartialFitByLibrary(s.ggml, []string{s.loadRequest.ProjectorPath}, s.loadRequest.LoraPath, s.options, gpus, s.numParallel)
|
|
} else {
|
|
slog.Info("model requires more memory than is currently available, evicting a model to make space", "estimate", s.estimate)
|
|
return ErrLoadRequiredFull
|
|
}
|
|
}
|
|
|
|
gpus = g
|
|
s.estimate = estimateGPULayers(gpus, s.ggml, []string{s.loadRequest.ProjectorPath}, s.options, s.numParallel)
|
|
|
|
if len(gpus) > 1 || gpus[0].Library != "cpu" {
|
|
switch {
|
|
case gpus[0].Library == "metal" && s.estimate.VRAMSize > systemInfo.System.TotalMemory:
|
|
// disable partial offloading when model is greater than total system memory as this
|
|
// can lead to locking up the system
|
|
s.options.NumGPU = 0
|
|
case gpus[0].Library != "metal" && s.estimate.Layers == 0:
|
|
// Don't bother loading into the GPU if no layers can fit
|
|
gpus = discover.GetCPUInfo()
|
|
case s.options.NumGPU < 0 && s.estimate.Layers > 0 && gpus[0].Library != "cpu":
|
|
s.options.NumGPU = s.estimate.Layers
|
|
}
|
|
}
|
|
|
|
// On linux and windows, over-allocating CPU memory will almost always result in an error
|
|
// Darwin has fully dynamic swap so has no direct concept of free swap space
|
|
if runtime.GOOS != "darwin" {
|
|
systemMemoryRequired := s.estimate.TotalSize - s.estimate.VRAMSize
|
|
available := systemInfo.System.FreeMemory + systemInfo.System.FreeSwap
|
|
if systemMemoryRequired > available {
|
|
slog.Warn("model request too large for system", "requested", format.HumanBytes2(systemMemoryRequired), "available", format.HumanBytes2(available), "total", format.HumanBytes2(systemInfo.System.TotalMemory), "free", format.HumanBytes2(systemInfo.System.FreeMemory), "swap", format.HumanBytes2(systemInfo.System.FreeSwap))
|
|
return fmt.Errorf("model requires more system memory (%s) than is available (%s)", format.HumanBytes2(systemMemoryRequired), format.HumanBytes2(available))
|
|
}
|
|
}
|
|
|
|
slog.Info("offload", "", s.estimate)
|
|
|
|
s.gpus = gpus
|
|
s.loadRequest.GPULayers = createGPULayers(s.estimate, s.ggml, gpus, s.options.NumGPU)
|
|
|
|
// Mmap is only supported on the llama engine
|
|
if s.textProcessor == nil {
|
|
s.loadRequest.UseMmap = true
|
|
|
|
// mmap has issues with partial offloading on metal
|
|
for _, g := range gpus {
|
|
if g.Library == "metal" &&
|
|
uint64(s.options.NumGPU) > 0 &&
|
|
uint64(s.options.NumGPU) < s.ggml.KV().BlockCount()+1 {
|
|
s.options.UseMMap = new(bool)
|
|
*s.options.UseMMap = false
|
|
}
|
|
}
|
|
|
|
// Windows CUDA should not use mmap for best performance
|
|
// Linux with a model larger than free space, mmap leads to thrashing
|
|
// For CPU loads we want the memory to be allocated, not FS cache
|
|
if (runtime.GOOS == "windows" && gpus[0].Library == "cuda" && s.options.UseMMap == nil) ||
|
|
(runtime.GOOS == "linux" && systemInfo.System.FreeMemory < s.estimate.TotalSize && s.options.UseMMap == nil) ||
|
|
(gpus[0].Library == "cpu" && s.options.UseMMap == nil) ||
|
|
(s.options.UseMMap != nil && !*s.options.UseMMap) {
|
|
s.loadRequest.UseMmap = false
|
|
}
|
|
}
|
|
|
|
if err := s.waitUntilRunnerLaunched(ctx); err != nil {
|
|
return err
|
|
}
|
|
|
|
resp, err := s.initModel(ctx, s.loadRequest, LoadOperationCommit)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// On the Ollama engine, we can print out a summary of the memory allocations.
|
|
// We don't have this for the llama engine but it does something similar itself.
|
|
if s.textProcessor != nil {
|
|
resp.Memory.Log(slog.LevelInfo)
|
|
}
|
|
|
|
if !resp.Success {
|
|
slog.Warn("failed to allocate memory for model", "memory", resp.Memory)
|
|
return errors.New("failed to allocate memory for model")
|
|
}
|
|
|
|
// The llama engine does its memory allocations together with model loading, so we
|
|
// need to wait until it is done to ensure that we have accurate memory data before
|
|
// loading the next model
|
|
if s.textProcessor == nil {
|
|
return s.WaitUntilRunning(ctx)
|
|
} else {
|
|
return nil
|
|
}
|
|
}
|
|
|
|
// createGPULayers maps from the tensor splits assigned by the memory estimates to explicit assignment
|
|
// of particular layers onto GPUs
|
|
func createGPULayers(estimate MemoryEstimate, ggml *ggml.GGML, gpus discover.GpuInfoList, numGPU int) ml.GPULayersList {
|
|
if numGPU <= 0 {
|
|
return nil
|
|
}
|
|
|
|
gpuLayers := make(ml.GPULayersList, len(gpus))
|
|
for i := range gpuLayers {
|
|
gpuLayers[i].ID = gpus[i].ID
|
|
}
|
|
|
|
var sum float32
|
|
splits := make([]float32, len(estimate.TensorSplit))
|
|
// cumulative sum of all splits
|
|
for i := range splits {
|
|
sum += float32(estimate.TensorSplit[i])
|
|
splits[i] = sum
|
|
}
|
|
|
|
if sum <= 0 {
|
|
return nil
|
|
}
|
|
|
|
// normalize splits
|
|
for i := range splits {
|
|
splits[i] /= sum
|
|
}
|
|
|
|
blocks := int(ggml.KV().BlockCount())
|
|
gpuRangeStart := max(0, blocks-numGPU)
|
|
gpuRangeStop := min(gpuRangeStart+numGPU, blocks+1)
|
|
for i := range blocks + 1 {
|
|
if i < gpuRangeStart || i >= gpuRangeStop {
|
|
continue
|
|
}
|
|
|
|
index := slices.IndexFunc(splits, func(f float32) bool { return float32(i-gpuRangeStart)/float32(gpuRangeStop-gpuRangeStart) < f })
|
|
if index < 0 || index >= len(gpus) {
|
|
continue
|
|
}
|
|
|
|
gpuLayers[index].Layers = append(gpuLayers[index].Layers, i)
|
|
}
|
|
|
|
return gpuLayers
|
|
}
|
|
|
|
// Load finds the optimal layout of layers to offload on GPUs based on no initial information about the size of the model
|
|
// It does this by:
|
|
// 1. Assigning the full model to the GPU with the largest available free memory
|
|
// 2. Attempting to allocate the layout and receiving the memory requirements in response
|
|
// 3. Creating a new layout based on the updated memory information
|
|
// 4. Going back to step 2 and looping until we either stabilize on a particular layout or discover that we have entered a cycle
|
|
//
|
|
// This process is repeated for higher levels of loading the model (fit, allocate, commit). The earlier levels are quicker,
|
|
// allowing for faster iteration, but may return less information.
|
|
func (s *ollamaServer) Load(ctx context.Context, gpus discover.GpuInfoList, requireFull bool) error {
|
|
var success bool
|
|
defer func() {
|
|
if !success {
|
|
s.initModel(ctx, LoadRequest{}, LoadOperationClose)
|
|
}
|
|
if s.mem != nil {
|
|
s.mem.Log(slog.LevelInfo)
|
|
}
|
|
}()
|
|
|
|
slog.Info("loading model", "model layers", s.totalLayers, "requested", s.options.NumGPU)
|
|
|
|
systemInfo := discover.GetSystemInfo()
|
|
systemTotalMemory := systemInfo.System.TotalMemory
|
|
systemFreeMemory := systemInfo.System.FreeMemory
|
|
systemSwapFreeMemory := systemInfo.System.FreeSwap
|
|
slog.Info("system memory", "total", format.HumanBytes2(systemTotalMemory), "free", format.HumanBytes2(systemFreeMemory), "free_swap", format.HumanBytes2(systemSwapFreeMemory))
|
|
|
|
if !(len(gpus) == 1 && gpus[0].Library == "cpu") {
|
|
for _, gpu := range gpus {
|
|
available := gpu.FreeMemory - envconfig.GpuOverhead() - gpu.MinimumMemory
|
|
if gpu.FreeMemory < envconfig.GpuOverhead()+gpu.MinimumMemory {
|
|
available = 0
|
|
}
|
|
slog.Info("gpu memory", "id", gpu.ID,
|
|
"available", format.HumanBytes2(available),
|
|
"free", format.HumanBytes2(gpu.FreeMemory),
|
|
"minimum", format.HumanBytes2(gpu.MinimumMemory),
|
|
"overhead", format.HumanBytes2(envconfig.GpuOverhead()))
|
|
}
|
|
}
|
|
|
|
pastAllocations := make(map[uint64]struct{})
|
|
var backoff float32
|
|
|
|
gpuLayers, err := s.createLayout(systemInfo, gpus, s.mem, requireFull, backoff)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
if err := s.waitUntilRunnerLaunched(ctx); err != nil {
|
|
return err
|
|
}
|
|
|
|
nextOperation:
|
|
for operation := LoadOperationFit; operation < LoadOperationCommit; operation++ {
|
|
nextLoad:
|
|
for {
|
|
s.loadRequest.GPULayers = gpuLayers
|
|
resp, err := s.initModel(ctx, s.loadRequest, operation)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
resp.Memory.Log(slog.LevelDebug)
|
|
slog.Debug("memory", "success", resp.Success, "required", resp.Memory)
|
|
|
|
pastAllocations[gpuLayers.Hash()] = struct{}{}
|
|
s.mem = &resp.Memory
|
|
|
|
for {
|
|
newGPULayers, err := s.createLayout(systemInfo, gpus, s.mem, requireFull, backoff)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
slog.Debug("new layout created", "layers", newGPULayers)
|
|
|
|
// We get additional memory information over time, which will reduce the number of
|
|
// layers that can fit, so fewer layers is actually better. As long as we haven't seen
|
|
// this layout before and it doesn't have more layers than the last one, we can keep
|
|
// trying to see if we can do better.
|
|
if _, ok := pastAllocations[newGPULayers.Hash()]; !ok && newGPULayers.Sum() <= gpuLayers.Sum() {
|
|
gpuLayers = newGPULayers
|
|
continue nextLoad
|
|
}
|
|
|
|
// If we are looping around a few different layouts due to graphs moving off and on
|
|
// GPUs, make sure that we try out the intermediate states. For example, if we are
|
|
// looping between offloading 39 and 41 layers, we should also check 40.
|
|
//
|
|
// This switches strategies to force an incremental number of layers to be offloaded
|
|
// and checking the memory layout. If the allocation succeeds and creating a new layout
|
|
// without forcing offload yields the same or greater number of layers offloaded, then
|
|
// the trial is successful.
|
|
//
|
|
// This alternate strategy does not introduce the possibility of loops with the overall
|
|
// state machine, as it exits this code block either with a successful result, moving
|
|
// to the next operation or the original number of layers offloaded.
|
|
if s.options.NumGPU < 0 && newGPULayers.Sum()-gpuLayers.Sum() > 1 {
|
|
for i := newGPULayers.Sum() - 1; i >= gpuLayers.Sum(); i-- {
|
|
slog.Debug("exploring intermediate layers", "layer", i)
|
|
|
|
s.options.NumGPU = i
|
|
newGPULayers, err = s.createLayout(systemInfo, gpus, s.mem, requireFull, backoff)
|
|
s.options.NumGPU = -1
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
slog.Debug("new layout created", "layers", newGPULayers)
|
|
|
|
s.loadRequest.GPULayers = newGPULayers
|
|
resp, err = s.initModel(ctx, s.loadRequest, operation)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
resp.Memory.Log(slog.LevelDebug)
|
|
slog.Debug("memory", "success", resp.Success, "required", resp.Memory)
|
|
|
|
if resp.Success {
|
|
verifyGPULayers, err := s.createLayout(systemInfo, gpus, &resp.Memory, requireFull, backoff)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
slog.Debug("verifying layout", "layers", verifyGPULayers)
|
|
|
|
if newGPULayers.Sum() <= verifyGPULayers.Sum() {
|
|
gpuLayers = newGPULayers
|
|
|
|
// Since we are going backwards (increasing the number of layers), ensure that
|
|
// we can come back down if needed
|
|
clear(pastAllocations)
|
|
|
|
continue nextOperation
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we generated a layout a second time or go backwards, then we've converged. Use the last
|
|
// layout before the repeat, which is already allocated.
|
|
if resp.Success {
|
|
continue nextOperation
|
|
}
|
|
|
|
if s.options.NumGPU >= 0 {
|
|
return fmt.Errorf("memory layout cannot be allocated with num_gpu = %v", s.options.NumGPU)
|
|
}
|
|
|
|
// Memory allocation failed even though we created a layout that we thought should
|
|
// fit in available memory. This could happen if either our free memory reports
|
|
// are incorrect or if available memory is changing between layout and allocation
|
|
// time. Apply an exponential backoff to try to find the real amount of available
|
|
// space.
|
|
if backoff > 1 {
|
|
slog.Warn("memory layout cannot be allocated", "memory", resp.Memory)
|
|
return errors.New("memory layout cannot be allocated")
|
|
} else if backoff == 0 {
|
|
backoff = 0.01
|
|
} else {
|
|
backoff *= 2
|
|
}
|
|
|
|
slog.Info("model layout did not fit, applying backoff", "backoff", fmt.Sprintf("%.2f", backoff))
|
|
}
|
|
}
|
|
}
|
|
|
|
s.loadRequest.GPULayers = gpuLayers
|
|
resp, err := s.initModel(ctx, s.loadRequest, LoadOperationCommit)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
success = resp.Success
|
|
s.mem = &resp.Memory
|
|
|
|
if !success {
|
|
slog.Warn("failed to commit memory for model", "memory", resp.Memory)
|
|
return errors.New("failed to commit memory for model")
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// createLayout uses the current best view of memory requirements and creates a layout of model layers on GPUs.
|
|
// It does this by:
|
|
// - Calculating how much space each layer requires
|
|
// - Calculating how much space each GPU has available for layers, based on free memory and space occupied by the graph
|
|
// - Assigning layers
|
|
// - Ensuring that we don't exceed limits, such as requirements about partial offloading or system memory
|
|
func (s *ollamaServer) createLayout(systemInfo discover.SystemInfo, systemGPUs discover.GpuInfoList, memory *ml.BackendMemory, requireFull bool, backoff float32) (ml.GPULayersList, error) {
|
|
if s.totalLayers == 0 || s.options.NumGPU == 0 || len(systemGPUs) == 0 || (len(systemGPUs) == 1 && systemGPUs[0].Library == "cpu") {
|
|
return ml.GPULayersList{}, nil
|
|
}
|
|
|
|
gpus := append(make(discover.GpuInfoList, 0, len(systemGPUs)), systemGPUs...)
|
|
sort.Sort(sort.Reverse(discover.ByFreeMemory(gpus)))
|
|
|
|
if memory == nil {
|
|
memory = &ml.BackendMemory{CPU: ml.DeviceMemory{
|
|
Weights: make([]ml.Memory, s.totalLayers),
|
|
Cache: make([]ml.Memory, s.totalLayers),
|
|
}}
|
|
}
|
|
|
|
layers := make([]uint64, len(memory.CPU.Weights))
|
|
for i := range layers {
|
|
for j := range memory.GPUs {
|
|
layers[i] += memory.GPUs[j].Weights[i].Size
|
|
layers[i] += memory.GPUs[j].Cache[i].Size
|
|
}
|
|
layers[i] += memory.CPU.Weights[i].Size
|
|
layers[i] += memory.CPU.Cache[i].Size
|
|
logutil.Trace("layer to assign", "layer", i, "size", format.HumanBytes2(layers[i]))
|
|
}
|
|
|
|
gpuLayers := ml.GPULayersList{}
|
|
for _, gl := range gpus.ByLibrary() {
|
|
// If a GPU already has a graph allocated on it, then we should continue to use it.
|
|
// Otherwise, we lose information that we got from previous allocations, which can
|
|
// cause cycling. Plus, we get more information about required allocation from each
|
|
// iteration, so it doesn't make sense that a later iteration would use fewer GPUs.
|
|
lastUsedGPU := 0
|
|
for i := range gl {
|
|
found := false
|
|
for j := range memory.GPUs {
|
|
if gl[i].ID == memory.GPUs[j].ID {
|
|
if memory.GPUs[j].Graph.Size != 0 {
|
|
lastUsedGPU = i
|
|
}
|
|
|
|
reserved := uint64(float32(gl[i].FreeMemory)*backoff) + gl[i].MinimumMemory + envconfig.GpuOverhead() + memory.GPUs[j].Graph.Size
|
|
if gl[i].FreeMemory > reserved {
|
|
gl[i].FreeMemory -= reserved
|
|
} else {
|
|
gl[i].FreeMemory = 0
|
|
}
|
|
|
|
slog.Debug("available gpu", "id", gl[i].ID,
|
|
"available layer vram", format.HumanBytes2(gl[i].FreeMemory),
|
|
"backoff", fmt.Sprintf("%.2f", backoff), "minimum", format.HumanBytes2(gl[i].MinimumMemory),
|
|
"overhead", format.HumanBytes2(envconfig.GpuOverhead()),
|
|
"graph", format.HumanBytes2(memory.GPUs[j].Graph.Size))
|
|
|
|
found = true
|
|
break
|
|
}
|
|
}
|
|
if !found {
|
|
// The runner doesn't report seeing this GPU
|
|
gl[i].FreeMemory = 0
|
|
}
|
|
}
|
|
|
|
libraryGpuLayers := assignLayers(layers, gl, s.options.NumGPU, lastUsedGPU)
|
|
if libraryGpuLayers.Sum() > gpuLayers.Sum() {
|
|
gpuLayers = libraryGpuLayers
|
|
}
|
|
}
|
|
|
|
// These sizes will only increase as we go through additional iterations and get additional information.
|
|
cpuSize := memory.InputWeights.Size + memory.CPU.Graph.Size
|
|
var vramSize uint64
|
|
for _, gl := range gpuLayers {
|
|
for _, gpu := range memory.GPUs {
|
|
if gl.ID == gpu.ID {
|
|
vramSize += gpu.Graph.Size
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
nextLayer:
|
|
for i := range layers {
|
|
for _, g := range gpuLayers {
|
|
for _, gl := range g.Layers {
|
|
if i == gl {
|
|
vramSize += layers[i]
|
|
continue nextLayer
|
|
}
|
|
}
|
|
}
|
|
cpuSize += layers[i]
|
|
}
|
|
|
|
if requireFull {
|
|
if gpuLayers.Sum() < len(layers) && (s.options.NumGPU < 0 || gpuLayers.Sum() < s.options.NumGPU) {
|
|
return nil, ErrLoadRequiredFull
|
|
}
|
|
|
|
if cpuSize > systemInfo.System.FreeMemory {
|
|
return nil, ErrLoadRequiredFull
|
|
}
|
|
}
|
|
|
|
// On linux and windows, over-allocating CPU memory will almost always result in an error
|
|
// Darwin has fully dynamic swap so has no direct concept of free swap space
|
|
if runtime.GOOS != "darwin" {
|
|
available := systemInfo.System.FreeMemory + systemInfo.System.FreeSwap
|
|
if cpuSize > available {
|
|
slog.Warn("model request too large for system", "requested", format.HumanBytes2(cpuSize), "available", format.HumanBytes2(available), "total", format.HumanBytes2(systemInfo.System.TotalMemory), "free", format.HumanBytes2(systemInfo.System.FreeMemory), "swap", format.HumanBytes2(systemInfo.System.FreeSwap))
|
|
return nil, fmt.Errorf("model requires more system memory (%s) than is available (%s)", format.HumanBytes2(cpuSize), format.HumanBytes2(available))
|
|
}
|
|
} else {
|
|
if vramSize > systemInfo.System.TotalMemory {
|
|
// disable partial offloading when model is greater than total system memory as this
|
|
// can lead to locking up the system
|
|
s.options.NumGPU = 0
|
|
gpuLayers = ml.GPULayersList{}
|
|
}
|
|
}
|
|
|
|
if gpuLayers.Sum() == 0 {
|
|
slog.Debug("insufficient VRAM to load any model layers")
|
|
}
|
|
|
|
return gpuLayers, nil
|
|
}
|
|
|
|
// assignLayers packs the maximum number of layers onto the smallest set of GPUs and comes up with a layer assignment
|
|
func assignLayers(layers []uint64, gpus discover.GpuInfoList, requestedLayers int, lastUsedGPU int) (gpuLayers ml.GPULayersList) {
|
|
// If we can't fit everything then prefer offloading layers other than the output layer
|
|
for range 2 {
|
|
// requestedLayers may be -1 if nothing was requested
|
|
requestedLayers = min(len(layers), requestedLayers)
|
|
|
|
if !envconfig.SchedSpread() {
|
|
for i := lastUsedGPU; i < len(gpus); i++ {
|
|
// Try to pack things into as few GPUs as possible
|
|
forceRequest := i == len(gpus)-1
|
|
gpuLayers = findBestFit(layers, gpus[:i+1], requestedLayers, forceRequest)
|
|
if gpuLayers.Sum() == len(layers) || gpuLayers.Sum() == requestedLayers {
|
|
break
|
|
}
|
|
}
|
|
} else {
|
|
gpuLayers = findBestFit(layers, gpus, requestedLayers, true)
|
|
}
|
|
|
|
// We only stop if we've gotten all of the layers - even if we got requestedLayers, we still
|
|
// might want to try dropping the output layer.
|
|
if gpuLayers.Sum() == len(layers) {
|
|
return gpuLayers
|
|
}
|
|
|
|
layers = layers[:len(layers)-1]
|
|
}
|
|
|
|
return gpuLayers
|
|
}
|
|
|
|
// findBestFit binary searches to find the smallest capacity factor that can fit
|
|
// the max number of layers. The capacity factor is multiplied by the free space on
|
|
// each GPU and a small one will force even balancing.
|
|
func findBestFit(layers []uint64, gpus discover.GpuInfoList, requestedLayers int, forceRequest bool) (gpuLayers ml.GPULayersList) {
|
|
var high float32 = 1
|
|
var low float32 = 0
|
|
|
|
// If we need to fulfill the requested number of layers, pretend we have almost infinite VRAM
|
|
if requestedLayers >= 0 && forceRequest {
|
|
high = 1000
|
|
}
|
|
|
|
bestAssignments := greedyFit(layers, gpus, high, requestedLayers)
|
|
maxNumGPU := bestAssignments.Sum()
|
|
if maxNumGPU == 0 {
|
|
return bestAssignments
|
|
}
|
|
|
|
for high-low > 1e-6 {
|
|
mid := (low + high) / 2
|
|
assignments := greedyFit(layers, gpus, mid, requestedLayers)
|
|
if assignments.Sum() == maxNumGPU {
|
|
high = mid
|
|
bestAssignments = assignments
|
|
} else {
|
|
low = mid
|
|
}
|
|
}
|
|
|
|
return bestAssignments
|
|
}
|
|
|
|
// greedyFit assigns layers incrementally to GPUs, spilling over as each runs out of free space
|
|
func greedyFit(layers []uint64, gpus discover.GpuInfoList, capacity float32, requestedLayers int) (gpuLayers ml.GPULayersList) {
|
|
device := len(gpus) - 1
|
|
gpuLayers = ml.GPULayersList{{ID: gpus[device].ID}}
|
|
freeSpace := uint64(float32(gpus[device].FreeMemory) * capacity)
|
|
for i := len(layers) - 1; i >= 0; i-- {
|
|
if requestedLayers >= 0 && len(layers)-1-i >= requestedLayers {
|
|
break
|
|
}
|
|
|
|
for {
|
|
if layers[i] <= freeSpace {
|
|
gpuLayers[0].Layers = append([]int{i}, gpuLayers[0].Layers...)
|
|
freeSpace -= layers[i]
|
|
break
|
|
}
|
|
|
|
device--
|
|
if device < 0 {
|
|
return gpuLayers
|
|
}
|
|
gpuLayers = append(ml.GPULayersList{{ID: gpus[device].ID}}, gpuLayers...)
|
|
freeSpace = uint64(float32(gpus[device].FreeMemory) * capacity)
|
|
}
|
|
}
|
|
|
|
return gpuLayers
|
|
}
|
|
|
|
// waitUntilRunnerLaunched sleeps until the runner subprocess is alive enough
|
|
// to respond to status requests
|
|
func (s *llmServer) waitUntilRunnerLaunched(ctx context.Context) error {
|
|
for {
|
|
_, err := s.getServerStatus(ctx)
|
|
if err == nil {
|
|
break
|
|
}
|
|
|
|
t := time.NewTimer(10 * time.Millisecond)
|
|
select {
|
|
case <-t.C:
|
|
continue
|
|
case <-ctx.Done():
|
|
return ctx.Err()
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// initModel sends a load request to the runner based on the request operation (fit, alloc, commit)
|
|
// and parameters
|
|
func (s *llmServer) initModel(ctx context.Context, req LoadRequest, operation LoadOperation) (*LoadResponse, error) {
|
|
req.Operation = operation
|
|
|
|
data, err := json.Marshal(req)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("error marshaling load data: %w", err)
|
|
}
|
|
|
|
r, err := http.NewRequestWithContext(ctx, http.MethodPost, fmt.Sprintf("http://127.0.0.1:%d/load", s.port), bytes.NewBuffer(data))
|
|
if err != nil {
|
|
return nil, fmt.Errorf("error creating load request: %w", err)
|
|
}
|
|
r.Header.Set("Content-Type", "application/json")
|
|
|
|
resp, err := http.DefaultClient.Do(r)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("do load request: %w", err)
|
|
}
|
|
defer resp.Body.Close()
|
|
|
|
body, err := io.ReadAll(resp.Body)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("read load request: %w", err)
|
|
}
|
|
|
|
if resp.StatusCode >= 400 {
|
|
log.Printf("llm load error: %s", body)
|
|
return nil, fmt.Errorf("%s", body)
|
|
}
|
|
|
|
var llmResp LoadResponse
|
|
if err := json.Unmarshal(body, &llmResp); err != nil {
|
|
return nil, fmt.Errorf("load unmarshal encode response: %w", err)
|
|
}
|
|
|
|
return &llmResp, nil
|
|
}
|
|
|
|
type ServerStatus int
|
|
|
|
const ( // iota is reset to 0
|
|
ServerStatusReady ServerStatus = iota
|
|
ServerStatusNoSlotsAvailable
|
|
ServerStatusLaunched
|
|
ServerStatusLoadingModel
|
|
ServerStatusNotResponding
|
|
ServerStatusError
|
|
)
|
|
|
|
func (s ServerStatus) String() string {
|
|
switch s {
|
|
case ServerStatusReady:
|
|
return "llm server ready"
|
|
case ServerStatusNoSlotsAvailable:
|
|
return "llm busy - no slots available"
|
|
case ServerStatusLaunched:
|
|
return "llm server launched"
|
|
case ServerStatusLoadingModel:
|
|
return "llm server loading model"
|
|
case ServerStatusNotResponding:
|
|
return "llm server not responding"
|
|
default:
|
|
return "llm server error"
|
|
}
|
|
}
|
|
|
|
type ServerStatusResponse struct {
|
|
Status ServerStatus `json:"status"`
|
|
Progress float32 `json:"progress"`
|
|
}
|
|
|
|
func (s *llmServer) getServerStatus(ctx context.Context) (ServerStatus, error) {
|
|
// Fail fast if its exited
|
|
if s.cmd.ProcessState != nil {
|
|
msg := ""
|
|
if s.status != nil && s.status.LastErrMsg != "" {
|
|
msg = s.status.LastErrMsg
|
|
}
|
|
if s.cmd.ProcessState.ExitCode() == -1 {
|
|
// Most likely a signal killed it, log some more details to try to help troubleshoot
|
|
slog.Warn("llama runner process no longer running", "sys", s.cmd.ProcessState.Sys(), "string", s.cmd.ProcessState)
|
|
}
|
|
return ServerStatusError, fmt.Errorf("llama runner process no longer running: %d %s", s.cmd.ProcessState.ExitCode(), msg)
|
|
}
|
|
|
|
req, err := http.NewRequestWithContext(ctx, http.MethodGet, fmt.Sprintf("http://127.0.0.1:%d/health", s.port), nil)
|
|
if err != nil {
|
|
return ServerStatusError, fmt.Errorf("error creating GET request: %v", err)
|
|
}
|
|
req.Header.Set("Content-Type", "application/json")
|
|
|
|
resp, err := http.DefaultClient.Do(req)
|
|
if err != nil {
|
|
if errors.Is(err, context.DeadlineExceeded) {
|
|
return ServerStatusNotResponding, errors.New("server not responding")
|
|
}
|
|
if strings.Contains(err.Error(), "connection refused") {
|
|
return ServerStatusNotResponding, errors.New("connection refused")
|
|
}
|
|
return ServerStatusError, fmt.Errorf("health resp: %w", err)
|
|
}
|
|
defer resp.Body.Close()
|
|
|
|
body, err := io.ReadAll(resp.Body)
|
|
if err != nil {
|
|
return ServerStatusError, fmt.Errorf("read health request: %w", err)
|
|
}
|
|
|
|
var ssr ServerStatusResponse
|
|
if err := json.Unmarshal(body, &ssr); err != nil {
|
|
return ServerStatusError, fmt.Errorf("health unmarshal encode response: %w", err)
|
|
}
|
|
|
|
switch ssr.Status {
|
|
case ServerStatusLoadingModel:
|
|
s.loadProgress = ssr.Progress
|
|
return ssr.Status, nil
|
|
case ServerStatusLaunched, ServerStatusReady, ServerStatusNoSlotsAvailable:
|
|
return ssr.Status, nil
|
|
default:
|
|
return ssr.Status, fmt.Errorf("server error: %+v", ssr)
|
|
}
|
|
}
|
|
|
|
// getServerStatusRetry will retry if ServerStatusNoSlotsAvailable is received
|
|
func (s *llmServer) getServerStatusRetry(ctx context.Context) (ServerStatus, error) {
|
|
var retries int
|
|
for {
|
|
status, err := s.getServerStatus(ctx)
|
|
if err != nil {
|
|
return status, err
|
|
}
|
|
|
|
if status == ServerStatusNoSlotsAvailable {
|
|
if retries >= 10 {
|
|
return status, fmt.Errorf("no slots available after %d retries", retries)
|
|
}
|
|
|
|
time.Sleep(5 * time.Millisecond)
|
|
retries++
|
|
continue
|
|
}
|
|
|
|
return status, nil
|
|
}
|
|
}
|
|
|
|
func (s *llmServer) Ping(ctx context.Context) error {
|
|
_, err := s.getServerStatus(ctx)
|
|
if err != nil {
|
|
slog.Debug("server unhealthy", "error", err)
|
|
return err
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func (s *llmServer) WaitUntilRunning(ctx context.Context) error {
|
|
stallDuration := envconfig.LoadTimeout() // If no progress happens
|
|
stallTimer := time.Now().Add(stallDuration) // give up if we stall
|
|
|
|
slog.Info("waiting for llama runner to start responding")
|
|
var lastStatus ServerStatus = -1
|
|
fullyLoaded := false
|
|
|
|
for {
|
|
select {
|
|
case <-ctx.Done():
|
|
slog.Warn("client connection closed before server finished loading, aborting load")
|
|
return fmt.Errorf("timed out waiting for llama runner to start: %w", ctx.Err())
|
|
case err := <-s.done:
|
|
return fmt.Errorf("llama runner process has terminated: %w", err)
|
|
default:
|
|
}
|
|
if time.Now().After(stallTimer) {
|
|
// timeout
|
|
msg := ""
|
|
if s.status != nil && s.status.LastErrMsg != "" {
|
|
msg = s.status.LastErrMsg
|
|
}
|
|
return fmt.Errorf("timed out waiting for llama runner to start - progress %0.2f - %s", s.loadProgress, msg)
|
|
}
|
|
if s.cmd.ProcessState != nil {
|
|
msg := ""
|
|
if s.status != nil && s.status.LastErrMsg != "" {
|
|
msg = s.status.LastErrMsg
|
|
}
|
|
return fmt.Errorf("llama runner process no longer running: %d %s", s.cmd.ProcessState.ExitCode(), msg)
|
|
}
|
|
ctx, cancel := context.WithTimeout(ctx, 200*time.Millisecond)
|
|
defer cancel()
|
|
priorProgress := s.loadProgress
|
|
status, _ := s.getServerStatus(ctx)
|
|
if lastStatus != status && status != ServerStatusReady {
|
|
// Only log on status changes
|
|
slog.Info("waiting for server to become available", "status", status)
|
|
}
|
|
switch status {
|
|
case ServerStatusReady:
|
|
slog.Info(fmt.Sprintf("llama runner started in %0.2f seconds", time.Since(s.loadStart).Seconds()))
|
|
return nil
|
|
default:
|
|
lastStatus = status
|
|
// Reset the timer as long as we're making forward progress on the load
|
|
if priorProgress != s.loadProgress {
|
|
slog.Debug(fmt.Sprintf("model load progress %0.2f", s.loadProgress))
|
|
stallTimer = time.Now().Add(stallDuration)
|
|
} else if !fullyLoaded && int(s.loadProgress*100.0) >= 100 {
|
|
slog.Debug("model load completed, waiting for server to become available", "status", status)
|
|
stallTimer = time.Now().Add(stallDuration)
|
|
fullyLoaded = true
|
|
}
|
|
time.Sleep(time.Millisecond * 250)
|
|
continue
|
|
}
|
|
}
|
|
}
|
|
|
|
func (s *llmServer) Pid() int {
|
|
if s.cmd != nil && s.cmd.Process != nil {
|
|
return s.cmd.Process.Pid
|
|
}
|
|
return -1
|
|
}
|
|
|
|
var grammarJSON = `
|
|
root ::= object
|
|
value ::= object | array | string | number | ("true" | "false" | "null") ws
|
|
object ::=
|
|
"{" ws (
|
|
string ":" ws value
|
|
("," ws string ":" ws value)*
|
|
)? ws "}"
|
|
array ::=
|
|
"[" ws (
|
|
value
|
|
("," ws value)*
|
|
)? ws "]"
|
|
string ::=
|
|
"\"" (
|
|
[^"\\\x7F\x00-\x1F] |
|
|
"\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F]) # escapes
|
|
)* "\""
|
|
number ::= ("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)?
|
|
# Optional space: by convention, applied in this grammar after literal chars when allowed
|
|
ws ::= ([ \t\n] ws)?
|
|
`
|
|
|
|
const maxBufferSize = 512 * format.KiloByte
|
|
|
|
type ImageData struct {
|
|
Data []byte `json:"data"`
|
|
ID int `json:"id"`
|
|
}
|
|
|
|
type CompletionRequest struct {
|
|
Prompt string
|
|
Format json.RawMessage
|
|
Images []ImageData
|
|
Options *api.Options
|
|
|
|
Grammar string // set before sending the request to the subprocess
|
|
UseHarmony bool
|
|
PrefillString string
|
|
}
|
|
|
|
// DoneReason represents the reason why a completion response is done
|
|
type DoneReason int
|
|
|
|
const (
|
|
// DoneReasonStop indicates the completion stopped naturally
|
|
DoneReasonStop DoneReason = iota
|
|
// DoneReasonLength indicates the completion stopped due to length limits
|
|
DoneReasonLength
|
|
// DoneReasonConnectionClosed indicates the completion stopped due to the connection being closed
|
|
DoneReasonConnectionClosed
|
|
// DoneReasonTokenRepeatLimit indicates the completion stopped due to a token repeat limit
|
|
DoneReasonTokenRepeatLimit
|
|
)
|
|
|
|
func (d DoneReason) String() string {
|
|
switch d {
|
|
case DoneReasonLength:
|
|
return "length"
|
|
case DoneReasonStop:
|
|
return "stop"
|
|
case DoneReasonTokenRepeatLimit:
|
|
return "token_repeat_limit"
|
|
default:
|
|
return "" // closed
|
|
}
|
|
}
|
|
|
|
type CompletionResponse struct {
|
|
Content string `json:"content"`
|
|
Thinking string `json:"thinking"`
|
|
ToolCalls []api.ToolCall `json:"tool_calls"`
|
|
DoneReason DoneReason `json:"done_reason"`
|
|
Done bool `json:"done"`
|
|
PromptEvalCount int `json:"prompt_eval_count"`
|
|
PromptEvalDuration time.Duration `json:"prompt_eval_duration"`
|
|
EvalCount int `json:"eval_count"`
|
|
EvalDuration time.Duration `json:"eval_duration"`
|
|
}
|
|
|
|
func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error {
|
|
slog.Debug("completion request", "images", len(req.Images), "prompt", len(req.Prompt), "format", string(req.Format))
|
|
slog.Log(ctx, logutil.LevelTrace, "completion request", "prompt", req.Prompt)
|
|
|
|
if len(req.Format) > 0 {
|
|
switch string(req.Format) {
|
|
case `null`, `""`:
|
|
// Field was set, but "missing" a value. We accept
|
|
// these as "not set".
|
|
break
|
|
case `"json"`:
|
|
req.Grammar = grammarJSON
|
|
default:
|
|
if req.Format[0] != '{' {
|
|
return fmt.Errorf("invalid format: %q; expected \"json\" or a valid JSON Schema object", req.Format)
|
|
}
|
|
|
|
// User provided a JSON schema
|
|
g := llama.SchemaToGrammar(req.Format)
|
|
if g == nil {
|
|
return fmt.Errorf("invalid JSON schema in format")
|
|
}
|
|
req.Grammar = string(g)
|
|
}
|
|
}
|
|
|
|
if req.Options == nil {
|
|
opts := api.DefaultOptions()
|
|
req.Options = &opts
|
|
}
|
|
|
|
if err := s.sem.Acquire(ctx, 1); err != nil {
|
|
if errors.Is(err, context.Canceled) {
|
|
slog.Info("aborting completion request due to client closing the connection")
|
|
} else {
|
|
slog.Error("Failed to acquire semaphore", "error", err)
|
|
}
|
|
return err
|
|
}
|
|
defer s.sem.Release(1)
|
|
|
|
// put an upper limit on num_predict to avoid the model running on forever
|
|
if req.Options.NumPredict < 0 || req.Options.NumPredict > 10*s.options.NumCtx {
|
|
req.Options.NumPredict = 10 * s.options.NumCtx
|
|
}
|
|
|
|
// Make sure the server is ready
|
|
status, err := s.getServerStatusRetry(ctx)
|
|
if err != nil {
|
|
return err
|
|
} else if status != ServerStatusReady {
|
|
return fmt.Errorf("unexpected server status: %s", status)
|
|
}
|
|
|
|
// Handling JSON marshaling with special characters unescaped.
|
|
buffer := &bytes.Buffer{}
|
|
enc := json.NewEncoder(buffer)
|
|
enc.SetEscapeHTML(false)
|
|
|
|
if err := enc.Encode(req); err != nil {
|
|
return fmt.Errorf("failed to marshal data: %v", err)
|
|
}
|
|
|
|
endpoint := fmt.Sprintf("http://127.0.0.1:%d/completion", s.port)
|
|
serverReq, err := http.NewRequestWithContext(ctx, http.MethodPost, endpoint, buffer)
|
|
if err != nil {
|
|
return fmt.Errorf("error creating POST request: %v", err)
|
|
}
|
|
serverReq.Header.Set("Content-Type", "application/json")
|
|
|
|
res, err := http.DefaultClient.Do(serverReq)
|
|
if err != nil {
|
|
slog.Error("post predict", "error", err)
|
|
return errors.New("model runner has unexpectedly stopped, this may be due to resource limitations or an internal error, check ollama server logs for details")
|
|
}
|
|
defer res.Body.Close()
|
|
|
|
if res.StatusCode >= 400 {
|
|
bodyBytes, err := io.ReadAll(res.Body)
|
|
if err != nil {
|
|
return fmt.Errorf("failed reading llm error response: %w", err)
|
|
}
|
|
log.Printf("llm predict error: %s", bodyBytes)
|
|
return fmt.Errorf("%s", bodyBytes)
|
|
}
|
|
|
|
scanner := bufio.NewScanner(res.Body)
|
|
buf := make([]byte, 0, maxBufferSize)
|
|
scanner.Buffer(buf, maxBufferSize)
|
|
|
|
// keep track of the last token generated, this is used to abort if the model starts looping
|
|
var lastToken string
|
|
var tokenRepeat int
|
|
|
|
for scanner.Scan() {
|
|
select {
|
|
case <-ctx.Done():
|
|
// This handles the request cancellation
|
|
return ctx.Err()
|
|
default:
|
|
line := scanner.Bytes()
|
|
if len(line) == 0 {
|
|
continue
|
|
}
|
|
|
|
evt, ok := bytes.CutPrefix(line, []byte("data: "))
|
|
if !ok {
|
|
evt = line
|
|
}
|
|
|
|
var c CompletionResponse
|
|
if err := json.Unmarshal(evt, &c); err != nil {
|
|
return fmt.Errorf("error unmarshalling llm prediction response: %v", err)
|
|
}
|
|
switch {
|
|
// TODO(parthsareen): token repeat limit is now handled in the runner, this currently support legacy model and can be removed in the future
|
|
case strings.TrimSpace(c.Content) == lastToken && c.Content != "":
|
|
tokenRepeat++
|
|
default:
|
|
lastToken = strings.TrimSpace(c.Content)
|
|
tokenRepeat = 0
|
|
}
|
|
|
|
// 30 picked as an arbitrary max token repeat limit, modify as needed
|
|
if tokenRepeat > 30 {
|
|
slog.Debug("prediction aborted, token repeat limit reached")
|
|
return ctx.Err()
|
|
}
|
|
|
|
if c.Done {
|
|
fn(c)
|
|
return nil
|
|
}
|
|
|
|
if c.Content != "" || c.Thinking != "" || len(c.ToolCalls) > 0 {
|
|
fn(c)
|
|
}
|
|
}
|
|
}
|
|
|
|
if err := scanner.Err(); err != nil {
|
|
if strings.Contains(err.Error(), "unexpected EOF") || strings.Contains(err.Error(), "forcibly closed") {
|
|
s.Close()
|
|
var msg string
|
|
if s.status != nil && s.status.LastErrMsg != "" {
|
|
msg = s.status.LastErrMsg
|
|
} else {
|
|
msg = err.Error()
|
|
}
|
|
return fmt.Errorf("an error was encountered while running the model: %s", msg)
|
|
}
|
|
|
|
return fmt.Errorf("error reading llm response: %v", err)
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
type EmbeddingRequest struct {
|
|
Content string `json:"content"`
|
|
}
|
|
|
|
type EmbeddingResponse struct {
|
|
Embedding []float32 `json:"embedding"`
|
|
}
|
|
|
|
func (s *llmServer) Embedding(ctx context.Context, input string) ([]float32, error) {
|
|
slog.Log(ctx, logutil.LevelTrace, "embedding request", "input", input)
|
|
|
|
if err := s.sem.Acquire(ctx, 1); err != nil {
|
|
if errors.Is(err, context.Canceled) {
|
|
slog.Info("aborting embedding request due to client closing the connection")
|
|
} else {
|
|
slog.Error("Failed to acquire semaphore", "error", err)
|
|
}
|
|
return nil, err
|
|
}
|
|
defer s.sem.Release(1)
|
|
|
|
// Make sure the server is ready
|
|
status, err := s.getServerStatusRetry(ctx)
|
|
if err != nil {
|
|
return nil, err
|
|
} else if status != ServerStatusReady {
|
|
return nil, fmt.Errorf("unexpected server status: %s", status)
|
|
}
|
|
|
|
data, err := json.Marshal(EmbeddingRequest{Content: input})
|
|
if err != nil {
|
|
return nil, fmt.Errorf("error marshaling embed data: %w", err)
|
|
}
|
|
|
|
r, err := http.NewRequestWithContext(ctx, http.MethodPost, fmt.Sprintf("http://127.0.0.1:%d/embedding", s.port), bytes.NewBuffer(data))
|
|
if err != nil {
|
|
return nil, fmt.Errorf("error creating embed request: %w", err)
|
|
}
|
|
r.Header.Set("Content-Type", "application/json")
|
|
|
|
resp, err := http.DefaultClient.Do(r)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("do embedding request: %w", err)
|
|
}
|
|
defer resp.Body.Close()
|
|
|
|
body, err := io.ReadAll(resp.Body)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("error reading embed response: %w", err)
|
|
}
|
|
|
|
if resp.StatusCode >= 400 {
|
|
log.Printf("llm embedding error: %s", body)
|
|
return nil, fmt.Errorf("%s", body)
|
|
}
|
|
|
|
var e EmbeddingResponse
|
|
if err := json.Unmarshal(body, &e); err != nil {
|
|
return nil, fmt.Errorf("unmarshal tokenize response: %w", err)
|
|
}
|
|
|
|
return e.Embedding, nil
|
|
}
|
|
|
|
type TokenizeRequest struct {
|
|
Content string `json:"content"`
|
|
}
|
|
|
|
type TokenizeResponse struct {
|
|
Tokens []int `json:"tokens"`
|
|
}
|
|
|
|
func (s *llmServer) Tokenize(ctx context.Context, content string) ([]int, error) {
|
|
s.llamaModelLock.Lock()
|
|
defer s.llamaModelLock.Unlock()
|
|
|
|
if s.llamaModel != nil {
|
|
return s.llamaModel.Tokenize(content, false, true)
|
|
}
|
|
if s.textProcessor != nil {
|
|
tokens, err := s.textProcessor.Encode(content, false)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
toks := make([]int, len(tokens))
|
|
for i, t := range tokens {
|
|
toks[i] = int(t)
|
|
}
|
|
return toks, nil
|
|
}
|
|
// not reached
|
|
return nil, fmt.Errorf("no tokenizer configured")
|
|
}
|
|
|
|
type DetokenizeRequest struct {
|
|
Tokens []int `json:"tokens"`
|
|
}
|
|
|
|
type DetokenizeResponse struct {
|
|
Content string `json:"content"`
|
|
}
|
|
|
|
func (s *llmServer) Detokenize(ctx context.Context, tokens []int) (string, error) {
|
|
s.llamaModelLock.Lock()
|
|
defer s.llamaModelLock.Unlock()
|
|
|
|
if s.llamaModel != nil {
|
|
var resp string
|
|
for _, token := range tokens {
|
|
resp += s.llamaModel.TokenToPiece(token)
|
|
}
|
|
return resp, nil
|
|
}
|
|
if s.textProcessor != nil {
|
|
toks := make([]int32, len(tokens))
|
|
for i, t := range tokens {
|
|
toks[i] = int32(t)
|
|
}
|
|
content, err := s.textProcessor.Decode(toks)
|
|
if err != nil {
|
|
return "", err
|
|
}
|
|
return content, nil
|
|
}
|
|
// not reached
|
|
return "", fmt.Errorf("no tokenizer configured")
|
|
}
|
|
|
|
func (s *llmServer) Close() error {
|
|
s.llamaModelLock.Lock()
|
|
if s.llamaModel != nil {
|
|
llama.FreeModel(s.llamaModel)
|
|
s.llamaModel = nil
|
|
}
|
|
s.llamaModelLock.Unlock()
|
|
|
|
if s.cmd != nil {
|
|
slog.Debug("stopping llama server", "pid", s.Pid())
|
|
if err := s.cmd.Process.Kill(); err != nil {
|
|
return err
|
|
}
|
|
// if ProcessState is already populated, Wait already completed, no need to wait again
|
|
if s.cmd.ProcessState == nil {
|
|
slog.Debug("waiting for llama server to exit", "pid", s.Pid())
|
|
<-s.done
|
|
}
|
|
|
|
slog.Debug("llama server stopped", "pid", s.Pid())
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func (s *llamaServer) VRAMSize() uint64 {
|
|
return s.estimate.VRAMSize
|
|
}
|
|
|
|
func (s *llamaServer) TotalSize() uint64 {
|
|
return s.estimate.TotalSize
|
|
}
|
|
|
|
func (s *llamaServer) VRAMByGPU(gpuID string) uint64 {
|
|
for i, gpu := range s.gpus {
|
|
if gpu.ID == gpuID {
|
|
if i < len(s.estimate.GPUSizes) {
|
|
return s.estimate.GPUSizes[i]
|
|
}
|
|
}
|
|
}
|
|
return 0
|
|
}
|
|
|
|
func (s *ollamaServer) VRAMSize() uint64 {
|
|
if s.mem == nil {
|
|
return 0
|
|
}
|
|
|
|
var mem uint64
|
|
|
|
for _, g := range s.mem.GPUs {
|
|
mem += g.Allocated()
|
|
}
|
|
|
|
// Some elements are always on CPU. However, if we have allocated all layers
|
|
// on the GPU then include the CPU components as well, to represent complete offloading.
|
|
noCPULayers := true
|
|
for i := range s.mem.CPU.Weights {
|
|
if s.mem.CPU.Weights[i].Size != 0 || s.mem.CPU.Cache[i].Size != 0 {
|
|
noCPULayers = false
|
|
break
|
|
}
|
|
}
|
|
if noCPULayers {
|
|
mem += s.mem.InputWeights.Size
|
|
mem += s.mem.CPU.Graph.Size
|
|
}
|
|
|
|
return mem
|
|
}
|
|
|
|
func (s *ollamaServer) TotalSize() uint64 {
|
|
if s.mem == nil {
|
|
return 0
|
|
}
|
|
|
|
mem := s.mem.InputWeights.Size
|
|
mem += s.mem.CPU.Allocated()
|
|
for _, g := range s.mem.GPUs {
|
|
mem += g.Allocated()
|
|
}
|
|
|
|
return mem
|
|
}
|
|
|
|
func (s *ollamaServer) VRAMByGPU(gpuID string) uint64 {
|
|
if s.mem == nil {
|
|
return 0
|
|
}
|
|
|
|
for _, g := range s.mem.GPUs {
|
|
if g.ID == gpuID {
|
|
return g.Allocated()
|
|
}
|
|
}
|
|
|
|
return 0
|
|
}
|