Files
ollama/server/prompt.go
Michael Yang fa7776fd24 gpt-oss (#11672)
* bf16

* tests

* gpt-oss

* enable gptoss for engine

* rough estimate

* convert to mxfp4

* handle safetensors U8

* clamp glu/linear

* update tokenizer

* MXFP4 support

This implements the Open Compute Microscaling (MX) FP4 format
as a tensor type with backend implementations focusing
on mulmat and mulmatid on CPU, CUDA, and Metal.

* Unit tests for MXFP4 support

This exercises various operations and shapes on both CPU and GPU (if detected
on the system)

* cuda graph

* unit test adjustments

* cuda: optimize memory access

Read 4 bytes at a time (8 elements) when performing mul_mat_vec_mxfp4

* mac: fix crash on old macos versions

cblas_sgemm is only supported on v13.3 and up, however bf16 is
only supported on v14+ so we were falling back to ggml-blas and
crashing on bf16 tensors.  Checking for the function being null
seems to be the simplest way to condittionally avoid registering the
backend.

* server: Minimum context length for gptoss

This model requires a minimum context length of 8192 to function
effectively. Users can set higher values through all normal mechanisms
but lower values will be silently reset.

* ggml: Multiply by numParallel for gptoss sliding window

When computing the graph size estimate, the context size is already
multiplied by numParallel so estimates reflect that. However, since
sliding window models use a smaller, fixed context size, they need
to manually take numParallel into account.

* gpt-oss integration

includes harmony parser and thinking levels, etc.

* fix sync

* fix tests

* fix lint

---------

Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Devon Rifkin <drifkin@drifkin.net>
2025-08-05 12:21:16 -07:00

117 lines
3.1 KiB
Go

package server
import (
"bytes"
"context"
"errors"
"fmt"
"log/slog"
"slices"
"strings"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/template"
)
type tokenizeFunc func(context.Context, string) ([]int, error)
// chatPrompt accepts a list of messages and returns the prompt and images that should be used for the next chat turn.
// chatPrompt truncates any messages that exceed the context window of the model, making sure to always include 1) the
// latest message and 2) system messages
func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.Options, msgs []api.Message, tools []api.Tool, think *api.ThinkValue) (prompt string, images []llm.ImageData, _ error) {
var system []api.Message
// TODO: Ideally we would compute this from the projector metadata but some pieces are implementation dependent
// Clip images are represented as 768 tokens, each an embedding
imageNumTokens := 768
n := len(msgs) - 1
// in reverse, find all messages that fit into context window
for i := n; i >= 0; i-- {
// always include the last message
if i == n {
continue
}
system = make([]api.Message, 0)
for j := range i {
if msgs[j].Role == "system" {
system = append(system, msgs[j])
}
}
thinkVal := false
thinkLevel := ""
if think != nil {
thinkVal = think.AsBool()
thinkLevel = think.AsString()
}
var b bytes.Buffer
if err := m.Template.Execute(&b, template.Values{Messages: append(system, msgs[i:]...), Tools: tools, Think: thinkVal, ThinkLevel: thinkLevel, IsThinkSet: think != nil}); err != nil {
return "", nil, err
}
s, err := tokenize(ctx, b.String())
if err != nil {
return "", nil, err
}
ctxLen := len(s)
if m.ProjectorPaths != nil {
for _, m := range msgs[i:] {
ctxLen += imageNumTokens * len(m.Images)
}
}
if ctxLen > opts.NumCtx {
slog.Debug("truncating input messages which exceed context length", "truncated", len(msgs[i:]))
break
} else {
n = i
}
}
currMsgIdx := n
for cnt, msg := range msgs[currMsgIdx:] {
if slices.Contains(m.Config.ModelFamilies, "mllama") && len(msg.Images) > 1 {
return "", nil, errors.New("this model only supports one image while more than one image requested")
}
var prefix string
prompt := msg.Content
for _, i := range msg.Images {
imgData := llm.ImageData{
ID: len(images),
Data: i,
}
imgTag := fmt.Sprintf("[img-%d]", imgData.ID)
if !strings.Contains(prompt, "[img]") {
prefix += imgTag
} else {
prompt = strings.Replace(prompt, "[img]", imgTag, 1)
}
images = append(images, imgData)
}
msgs[currMsgIdx+cnt].Content = prefix + prompt
}
// truncate any messages that do not fit into the context window
var b bytes.Buffer
thinkVal := false
thinkLevel := ""
if think != nil {
thinkVal = think.AsBool()
thinkLevel = think.AsString()
}
if err := m.Template.Execute(&b, template.Values{Messages: append(system, msgs[currMsgIdx:]...), Tools: tools, Think: thinkVal, ThinkLevel: thinkLevel, IsThinkSet: think != nil}); err != nil {
return "", nil, err
}
return b.String(), images, nil
}