ollama/sample/sample.go
Michael Yang 58245413f4
next ollama runner (#7913)
feat: add new Ollama engine using ggml through cgo

This change introduces a new way to run pretrained models. It introduces 3 high level interfaces and a bunch of smaller helper interfaces to facilitate this.

- `model.Model` defines the interface for a model architecture. Models such as `llama` and `mllama`, which are provided as examples, can implement the model's forward propagation in the `Forward` method. This method will be called to generate completions. This interface can be found in `model/model.go`
- `ml.Backend` defines the interface for a backend tensor library, in this case `ggml`. Among other things, a Backend is responsible for loading a pretrained model into hardware (GPU, CPU, etc) and providing an interface for Models to access loaded tensors. This interface can be found in `ml/backend.go`
- `ml.Tensor` defines the interface for a tensor and tensor operations

This is the first implementation of the new engine. Follow up PRs will implement more features:

- non-greedy sampling (#8410)
- integration with Ollama and KV caching (#8301)
- more model support (#9080) with more coming soon

Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
2025-02-13 16:31:21 -08:00

75 lines
1.2 KiB
Go

package sample
import (
"slices"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/stat/sampleuv"
)
type Sampler interface {
Sample([]float64) ([]float64, error)
}
type Temperature float64
func (s Temperature) Sample(t []float64) ([]float64, error) {
floats.Div(t, slices.Repeat([]float64{float64(s)}, len(t)))
return t, nil
}
type softmax struct{}
func Softmax() Sampler {
return softmax{}
}
func (softmax) Sample(t []float64) ([]float64, error) {
return t, nil
}
type TopK int
func (s TopK) Sample(t []float64) ([]float64, error) {
return t, nil
}
type TopP float32
func (s TopP) Sample(t []float64) ([]float64, error) {
return t, nil
}
type MinP float32
func (s MinP) Sample(t []float64) ([]float64, error) {
return t, nil
}
type weighed struct{}
func Weighed() Sampler {
return weighed{}
}
func (s weighed) Sample(t []float64) ([]float64, error) {
w := sampleuv.NewWeighted(t, nil)
if v, ok := w.Take(); ok {
return []float64{float64(v)}, nil
}
return t, nil
}
func Sample(floats []float64, samplers ...Sampler) ([]float64, error) {
var err error
for _, sampler := range samplers {
floats, err = sampler.Sample(floats)
if err != nil {
return nil, err
}
}
return floats, nil
}