mirror of
https://github.com/ollama/ollama.git
synced 2025-03-29 03:01:45 +01:00
91 lines
3.2 KiB
Plaintext
Vendored
91 lines
3.2 KiB
Plaintext
Vendored
/**
|
|
* llama.cpp - commit 40c6d79fb52f995f47507fedfeaae2ac05d9b35c - do not edit this file
|
|
*
|
|
* MIT License
|
|
*
|
|
* Copyright (c) 2023-2024 The ggml authors
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include "common.cuh"
|
|
#include "count-equal.cuh"
|
|
|
|
#include <cstdint>
|
|
|
|
template <typename T>
|
|
static __global__ void count_equal(const T * __restrict__ x, const T * __restrict__ y, int64_t * __restrict__ dst, const int64_t dk, const int64_t k) {
|
|
const int64_t i0 = (int64_t) blockIdx.x*dk;
|
|
const int64_t i1 = min(i0 + dk, k);
|
|
|
|
int nequal = 0;
|
|
|
|
for (int64_t i = i0 + threadIdx.x; i < i1; i += WARP_SIZE) {
|
|
const T xi = x[i];
|
|
const T yi = y[i];
|
|
nequal += xi == yi;
|
|
}
|
|
|
|
nequal = warp_reduce_sum(nequal);
|
|
|
|
if (threadIdx.x != 0) {
|
|
return;
|
|
}
|
|
|
|
atomicAdd((int *) dst, nequal);
|
|
}
|
|
|
|
void ggml_cuda_count_equal(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
GGML_ASSERT(src0->type == src1->type);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_I64);
|
|
|
|
GGML_ASSERT(ggml_are_same_shape(src0, src1));
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
GGML_ASSERT(ggml_is_contiguous(src1));
|
|
GGML_ASSERT(ggml_is_contiguous(dst));
|
|
|
|
int64_t * dst_d = (int64_t *) dst->data;
|
|
|
|
cudaStream_t stream = ctx.stream();
|
|
const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
|
|
|
|
const int64_t ne = ggml_nelements(src0);
|
|
GGML_ASSERT(ne < (1 << 30) && "atomicAdd implementation only supports int");
|
|
const int64_t dne = GGML_PAD((ne + 4*nsm - 1) / (4*nsm), CUDA_COUNT_EQUAL_CHUNK_SIZE);
|
|
|
|
CUDA_CHECK(cudaMemsetAsync(dst_d, 0, ggml_nbytes(dst), stream));
|
|
|
|
const dim3 blocks_dim(WARP_SIZE, 1, 1);
|
|
const dim3 blocks_num(std::min((int64_t)4*nsm, (ne + CUDA_COUNT_EQUAL_CHUNK_SIZE - 1)/CUDA_COUNT_EQUAL_CHUNK_SIZE), 1, 1);
|
|
|
|
switch (src0->type) {
|
|
case GGML_TYPE_I32: {
|
|
const int * src0_d = (const int *) src0->data;
|
|
const int * src1_d = (const int *) src1->data;
|
|
count_equal<<<blocks_num, blocks_dim, 0, stream>>>(src0_d, src1_d, dst_d, dne, ne);
|
|
} break;
|
|
default:
|
|
GGML_ASSERT(false);
|
|
break;
|
|
}
|
|
}
|