mirror of
https://github.com/ollama/ollama.git
synced 2025-03-19 22:32:15 +01:00
* llama: wire up builtin runner This adds a new entrypoint into the ollama CLI to run the cgo built runner. On Mac arm64, this will have GPU support, but on all other platforms it will be the lowest common denominator CPU build. After we fully transition to the new Go runners more tech-debt can be removed and we can stop building the "default" runner via make and rely on the builtin always. * build: Make target improvements Add a few new targets and help for building locally. This also adjusts the runner lookup to favor local builds, then runners relative to the executable, and finally payloads. * Support customized CPU flags for runners This implements a simplified custom CPU flags pattern for the runners. When built without overrides, the runner name contains the vector flag we check for (AVX) to ensure we don't try to run on unsupported systems and crash. If the user builds a customized set, we omit the naming scheme and don't check for compatibility. This avoids checking requirements at runtime, so that logic has been removed as well. This can be used to build GPU runners with no vector flags, or CPU/GPU runners with additional flags (e.g. AVX512) enabled. * Use relative paths If the user checks out the repo in a path that contains spaces, make gets really confused so use relative paths for everything in-repo to avoid breakage. * Remove payloads from main binary * install: clean up prior libraries This removes support for v0.3.6 and older versions (before the tar bundle) and ensures we clean up prior libraries before extracting the bundle(s). Without this change, runners and dependent libraries could leak when we update and lead to subtle runtime errors.
760 lines
22 KiB
Go
760 lines
22 KiB
Go
//go:build linux || windows
|
|
|
|
package discover
|
|
|
|
/*
|
|
#cgo linux LDFLAGS: -lrt -lpthread -ldl -lstdc++ -lm
|
|
#cgo windows LDFLAGS: -lpthread
|
|
|
|
#include "gpu_info.h"
|
|
*/
|
|
import "C"
|
|
|
|
import (
|
|
"fmt"
|
|
"log/slog"
|
|
"os"
|
|
"path/filepath"
|
|
"runtime"
|
|
"strconv"
|
|
"strings"
|
|
"sync"
|
|
"unsafe"
|
|
|
|
"github.com/ollama/ollama/envconfig"
|
|
"github.com/ollama/ollama/format"
|
|
"github.com/ollama/ollama/runners"
|
|
)
|
|
|
|
type cudaHandles struct {
|
|
deviceCount int
|
|
cudart *C.cudart_handle_t
|
|
nvcuda *C.nvcuda_handle_t
|
|
nvml *C.nvml_handle_t
|
|
}
|
|
|
|
type oneapiHandles struct {
|
|
oneapi *C.oneapi_handle_t
|
|
deviceCount int
|
|
}
|
|
|
|
const (
|
|
cudaMinimumMemory = 457 * format.MebiByte
|
|
rocmMinimumMemory = 457 * format.MebiByte
|
|
// TODO OneAPI minimum memory
|
|
)
|
|
|
|
var (
|
|
gpuMutex sync.Mutex
|
|
bootstrapped bool
|
|
cpus []CPUInfo
|
|
cudaGPUs []CudaGPUInfo
|
|
nvcudaLibPath string
|
|
cudartLibPath string
|
|
oneapiLibPath string
|
|
nvmlLibPath string
|
|
rocmGPUs []RocmGPUInfo
|
|
oneapiGPUs []OneapiGPUInfo
|
|
|
|
// If any discovered GPUs are incompatible, report why
|
|
unsupportedGPUs []UnsupportedGPUInfo
|
|
|
|
// Keep track of errors during bootstrapping so that if GPUs are missing
|
|
// they expected to be present this may explain why
|
|
bootstrapErrors []error
|
|
)
|
|
|
|
// With our current CUDA compile flags, older than 5.0 will not work properly
|
|
// (string values used to allow ldflags overrides at build time)
|
|
var (
|
|
CudaComputeMajorMin = "5"
|
|
CudaComputeMinorMin = "0"
|
|
)
|
|
|
|
var RocmComputeMajorMin = "9"
|
|
|
|
// TODO find a better way to detect iGPU instead of minimum memory
|
|
const IGPUMemLimit = 1 * format.GibiByte // 512G is what they typically report, so anything less than 1G must be iGPU
|
|
|
|
// Note: gpuMutex must already be held
|
|
func initCudaHandles() *cudaHandles {
|
|
// TODO - if the ollama build is CPU only, don't do these checks as they're irrelevant and confusing
|
|
|
|
cHandles := &cudaHandles{}
|
|
// Short Circuit if we already know which library to use
|
|
// ignore bootstrap errors in this case since we already recorded them
|
|
if nvmlLibPath != "" {
|
|
cHandles.nvml, _, _ = loadNVMLMgmt([]string{nvmlLibPath})
|
|
return cHandles
|
|
}
|
|
if nvcudaLibPath != "" {
|
|
cHandles.deviceCount, cHandles.nvcuda, _, _ = loadNVCUDAMgmt([]string{nvcudaLibPath})
|
|
return cHandles
|
|
}
|
|
if cudartLibPath != "" {
|
|
cHandles.deviceCount, cHandles.cudart, _, _ = loadCUDARTMgmt([]string{cudartLibPath})
|
|
return cHandles
|
|
}
|
|
|
|
slog.Debug("searching for GPU discovery libraries for NVIDIA")
|
|
var cudartMgmtPatterns []string
|
|
|
|
// Aligned with driver, we can't carry as payloads
|
|
nvcudaMgmtPatterns := NvcudaGlobs
|
|
|
|
if runtime.GOOS == "windows" {
|
|
localAppData := os.Getenv("LOCALAPPDATA")
|
|
cudartMgmtPatterns = []string{filepath.Join(localAppData, "Programs", "Ollama", CudartMgmtName)}
|
|
}
|
|
libDirs := LibraryDirs()
|
|
for _, d := range libDirs {
|
|
cudartMgmtPatterns = append(cudartMgmtPatterns, filepath.Join(d, CudartMgmtName))
|
|
}
|
|
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartGlobs...)
|
|
|
|
if len(NvmlGlobs) > 0 {
|
|
nvmlLibPaths := FindGPULibs(NvmlMgmtName, NvmlGlobs)
|
|
if len(nvmlLibPaths) > 0 {
|
|
nvml, libPath, err := loadNVMLMgmt(nvmlLibPaths)
|
|
if nvml != nil {
|
|
slog.Debug("nvidia-ml loaded", "library", libPath)
|
|
cHandles.nvml = nvml
|
|
nvmlLibPath = libPath
|
|
}
|
|
if err != nil {
|
|
bootstrapErrors = append(bootstrapErrors, err)
|
|
}
|
|
}
|
|
}
|
|
|
|
nvcudaLibPaths := FindGPULibs(NvcudaMgmtName, nvcudaMgmtPatterns)
|
|
if len(nvcudaLibPaths) > 0 {
|
|
deviceCount, nvcuda, libPath, err := loadNVCUDAMgmt(nvcudaLibPaths)
|
|
if nvcuda != nil {
|
|
slog.Debug("detected GPUs", "count", deviceCount, "library", libPath)
|
|
cHandles.nvcuda = nvcuda
|
|
cHandles.deviceCount = deviceCount
|
|
nvcudaLibPath = libPath
|
|
return cHandles
|
|
}
|
|
if err != nil {
|
|
bootstrapErrors = append(bootstrapErrors, err)
|
|
}
|
|
}
|
|
|
|
cudartLibPaths := FindGPULibs(CudartMgmtName, cudartMgmtPatterns)
|
|
if len(cudartLibPaths) > 0 {
|
|
deviceCount, cudart, libPath, err := loadCUDARTMgmt(cudartLibPaths)
|
|
if cudart != nil {
|
|
slog.Debug("detected GPUs", "library", libPath, "count", deviceCount)
|
|
cHandles.cudart = cudart
|
|
cHandles.deviceCount = deviceCount
|
|
cudartLibPath = libPath
|
|
return cHandles
|
|
}
|
|
if err != nil {
|
|
bootstrapErrors = append(bootstrapErrors, err)
|
|
}
|
|
}
|
|
|
|
return cHandles
|
|
}
|
|
|
|
// Note: gpuMutex must already be held
|
|
func initOneAPIHandles() *oneapiHandles {
|
|
oHandles := &oneapiHandles{}
|
|
|
|
// Short Circuit if we already know which library to use
|
|
// ignore bootstrap errors in this case since we already recorded them
|
|
if oneapiLibPath != "" {
|
|
oHandles.deviceCount, oHandles.oneapi, _, _ = loadOneapiMgmt([]string{oneapiLibPath})
|
|
return oHandles
|
|
}
|
|
|
|
oneapiLibPaths := FindGPULibs(OneapiMgmtName, OneapiGlobs)
|
|
if len(oneapiLibPaths) > 0 {
|
|
var err error
|
|
oHandles.deviceCount, oHandles.oneapi, oneapiLibPath, err = loadOneapiMgmt(oneapiLibPaths)
|
|
if err != nil {
|
|
bootstrapErrors = append(bootstrapErrors, err)
|
|
}
|
|
}
|
|
|
|
return oHandles
|
|
}
|
|
|
|
func GetCPUInfo() GpuInfoList {
|
|
gpuMutex.Lock()
|
|
if !bootstrapped {
|
|
gpuMutex.Unlock()
|
|
GetGPUInfo()
|
|
} else {
|
|
gpuMutex.Unlock()
|
|
}
|
|
return GpuInfoList{cpus[0].GpuInfo}
|
|
}
|
|
|
|
func GetGPUInfo() GpuInfoList {
|
|
// TODO - consider exploring lspci (and equivalent on windows) to check for
|
|
// GPUs so we can report warnings if we see Nvidia/AMD but fail to load the libraries
|
|
gpuMutex.Lock()
|
|
defer gpuMutex.Unlock()
|
|
needRefresh := true
|
|
var cHandles *cudaHandles
|
|
var oHandles *oneapiHandles
|
|
defer func() {
|
|
if cHandles != nil {
|
|
if cHandles.cudart != nil {
|
|
C.cudart_release(*cHandles.cudart)
|
|
}
|
|
if cHandles.nvcuda != nil {
|
|
C.nvcuda_release(*cHandles.nvcuda)
|
|
}
|
|
if cHandles.nvml != nil {
|
|
C.nvml_release(*cHandles.nvml)
|
|
}
|
|
}
|
|
if oHandles != nil {
|
|
if oHandles.oneapi != nil {
|
|
// TODO - is this needed?
|
|
C.oneapi_release(*oHandles.oneapi)
|
|
}
|
|
}
|
|
}()
|
|
|
|
if !bootstrapped {
|
|
slog.Info("looking for compatible GPUs")
|
|
cudaComputeMajorMin, err := strconv.Atoi(CudaComputeMajorMin)
|
|
if err != nil {
|
|
slog.Error("invalid CudaComputeMajorMin setting", "value", CudaComputeMajorMin, "error", err)
|
|
}
|
|
cudaComputeMinorMin, err := strconv.Atoi(CudaComputeMinorMin)
|
|
if err != nil {
|
|
slog.Error("invalid CudaComputeMinorMin setting", "value", CudaComputeMinorMin, "error", err)
|
|
}
|
|
bootstrapErrors = []error{}
|
|
needRefresh = false
|
|
var memInfo C.mem_info_t
|
|
|
|
mem, err := GetCPUMem()
|
|
if err != nil {
|
|
slog.Warn("error looking up system memory", "error", err)
|
|
}
|
|
depPaths := LibraryDirs()
|
|
details, err := GetCPUDetails()
|
|
if err != nil {
|
|
slog.Warn("failed to lookup CPU details", "error", err)
|
|
}
|
|
cpus = []CPUInfo{
|
|
{
|
|
GpuInfo: GpuInfo{
|
|
memInfo: mem,
|
|
Library: "cpu",
|
|
Variant: runners.GetCPUCapability().String(),
|
|
ID: "0",
|
|
DependencyPath: depPaths,
|
|
},
|
|
CPUs: details,
|
|
},
|
|
}
|
|
|
|
// Load ALL libraries
|
|
cHandles = initCudaHandles()
|
|
|
|
// NVIDIA
|
|
for i := range cHandles.deviceCount {
|
|
if cHandles.cudart != nil || cHandles.nvcuda != nil {
|
|
gpuInfo := CudaGPUInfo{
|
|
GpuInfo: GpuInfo{
|
|
Library: "cuda",
|
|
},
|
|
index: i,
|
|
}
|
|
var driverMajor int
|
|
var driverMinor int
|
|
if cHandles.cudart != nil {
|
|
C.cudart_bootstrap(*cHandles.cudart, C.int(i), &memInfo)
|
|
} else {
|
|
C.nvcuda_bootstrap(*cHandles.nvcuda, C.int(i), &memInfo)
|
|
driverMajor = int(cHandles.nvcuda.driver_major)
|
|
driverMinor = int(cHandles.nvcuda.driver_minor)
|
|
}
|
|
if memInfo.err != nil {
|
|
slog.Info("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
|
|
C.free(unsafe.Pointer(memInfo.err))
|
|
continue
|
|
}
|
|
gpuInfo.TotalMemory = uint64(memInfo.total)
|
|
gpuInfo.FreeMemory = uint64(memInfo.free)
|
|
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
|
|
gpuInfo.Compute = fmt.Sprintf("%d.%d", memInfo.major, memInfo.minor)
|
|
gpuInfo.computeMajor = int(memInfo.major)
|
|
gpuInfo.computeMinor = int(memInfo.minor)
|
|
gpuInfo.MinimumMemory = cudaMinimumMemory
|
|
gpuInfo.DriverMajor = driverMajor
|
|
gpuInfo.DriverMinor = driverMinor
|
|
variant := cudaVariant(gpuInfo)
|
|
if depPaths != nil {
|
|
gpuInfo.DependencyPath = depPaths
|
|
// Check for variant specific directory
|
|
if variant != "" {
|
|
for _, d := range depPaths {
|
|
if _, err := os.Stat(filepath.Join(d, "cuda_"+variant)); err == nil {
|
|
// Put the variant directory first in the search path to avoid runtime linking to the wrong library
|
|
gpuInfo.DependencyPath = append([]string{filepath.Join(d, "cuda_"+variant)}, gpuInfo.DependencyPath...)
|
|
break
|
|
}
|
|
}
|
|
}
|
|
}
|
|
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
|
|
gpuInfo.Variant = variant
|
|
|
|
if int(memInfo.major) < cudaComputeMajorMin || (int(memInfo.major) == cudaComputeMajorMin && int(memInfo.minor) < cudaComputeMinorMin) {
|
|
unsupportedGPUs = append(unsupportedGPUs,
|
|
UnsupportedGPUInfo{
|
|
GpuInfo: gpuInfo.GpuInfo,
|
|
})
|
|
slog.Info(fmt.Sprintf("[%d] CUDA GPU is too old. Compute Capability detected: %d.%d", i, memInfo.major, memInfo.minor))
|
|
continue
|
|
}
|
|
|
|
// query the management library as well so we can record any skew between the two
|
|
// which represents overhead on the GPU we must set aside on subsequent updates
|
|
if cHandles.nvml != nil {
|
|
uuid := C.CString(gpuInfo.ID)
|
|
defer C.free(unsafe.Pointer(uuid))
|
|
C.nvml_get_free(*cHandles.nvml, uuid, &memInfo.free, &memInfo.total, &memInfo.used)
|
|
if memInfo.err != nil {
|
|
slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
|
|
C.free(unsafe.Pointer(memInfo.err))
|
|
} else {
|
|
if memInfo.free != 0 && uint64(memInfo.free) > gpuInfo.FreeMemory {
|
|
gpuInfo.OSOverhead = uint64(memInfo.free) - gpuInfo.FreeMemory
|
|
slog.Info("detected OS VRAM overhead",
|
|
"id", gpuInfo.ID,
|
|
"library", gpuInfo.Library,
|
|
"compute", gpuInfo.Compute,
|
|
"driver", fmt.Sprintf("%d.%d", gpuInfo.DriverMajor, gpuInfo.DriverMinor),
|
|
"name", gpuInfo.Name,
|
|
"overhead", format.HumanBytes2(gpuInfo.OSOverhead),
|
|
)
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO potentially sort on our own algorithm instead of what the underlying GPU library does...
|
|
cudaGPUs = append(cudaGPUs, gpuInfo)
|
|
}
|
|
}
|
|
|
|
// Intel
|
|
if envconfig.IntelGPU() {
|
|
oHandles = initOneAPIHandles()
|
|
if oHandles != nil && oHandles.oneapi != nil {
|
|
for d := range oHandles.oneapi.num_drivers {
|
|
if oHandles.oneapi == nil {
|
|
// shouldn't happen
|
|
slog.Warn("nil oneapi handle with driver count", "count", int(oHandles.oneapi.num_drivers))
|
|
continue
|
|
}
|
|
devCount := C.oneapi_get_device_count(*oHandles.oneapi, C.int(d))
|
|
for i := range devCount {
|
|
gpuInfo := OneapiGPUInfo{
|
|
GpuInfo: GpuInfo{
|
|
Library: "oneapi",
|
|
},
|
|
driverIndex: int(d),
|
|
gpuIndex: int(i),
|
|
}
|
|
// TODO - split bootstrapping from updating free memory
|
|
C.oneapi_check_vram(*oHandles.oneapi, C.int(d), i, &memInfo)
|
|
// TODO - convert this to MinimumMemory based on testing...
|
|
var totalFreeMem float64 = float64(memInfo.free) * 0.95 // work-around: leave some reserve vram for mkl lib used in ggml-sycl backend.
|
|
memInfo.free = C.uint64_t(totalFreeMem)
|
|
gpuInfo.TotalMemory = uint64(memInfo.total)
|
|
gpuInfo.FreeMemory = uint64(memInfo.free)
|
|
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
|
|
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
|
|
gpuInfo.DependencyPath = depPaths
|
|
oneapiGPUs = append(oneapiGPUs, gpuInfo)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
rocmGPUs, err = AMDGetGPUInfo()
|
|
if err != nil {
|
|
bootstrapErrors = append(bootstrapErrors, err)
|
|
}
|
|
bootstrapped = true
|
|
if len(cudaGPUs) == 0 && len(rocmGPUs) == 0 && len(oneapiGPUs) == 0 {
|
|
slog.Info("no compatible GPUs were discovered")
|
|
}
|
|
|
|
// TODO verify we have runners for the discovered GPUs, filter out any that aren't supported with good error messages
|
|
}
|
|
|
|
// For detected GPUs, load library if not loaded
|
|
|
|
// Refresh free memory usage
|
|
if needRefresh {
|
|
mem, err := GetCPUMem()
|
|
if err != nil {
|
|
slog.Warn("error looking up system memory", "error", err)
|
|
} else {
|
|
slog.Debug("updating system memory data",
|
|
slog.Group(
|
|
"before",
|
|
"total", format.HumanBytes2(cpus[0].TotalMemory),
|
|
"free", format.HumanBytes2(cpus[0].FreeMemory),
|
|
"free_swap", format.HumanBytes2(cpus[0].FreeSwap),
|
|
),
|
|
slog.Group(
|
|
"now",
|
|
"total", format.HumanBytes2(mem.TotalMemory),
|
|
"free", format.HumanBytes2(mem.FreeMemory),
|
|
"free_swap", format.HumanBytes2(mem.FreeSwap),
|
|
),
|
|
)
|
|
cpus[0].FreeMemory = mem.FreeMemory
|
|
cpus[0].FreeSwap = mem.FreeSwap
|
|
}
|
|
|
|
var memInfo C.mem_info_t
|
|
if cHandles == nil && len(cudaGPUs) > 0 {
|
|
cHandles = initCudaHandles()
|
|
}
|
|
for i, gpu := range cudaGPUs {
|
|
if cHandles.nvml != nil {
|
|
uuid := C.CString(gpu.ID)
|
|
defer C.free(unsafe.Pointer(uuid))
|
|
C.nvml_get_free(*cHandles.nvml, uuid, &memInfo.free, &memInfo.total, &memInfo.used)
|
|
} else if cHandles.cudart != nil {
|
|
C.cudart_bootstrap(*cHandles.cudart, C.int(gpu.index), &memInfo)
|
|
} else if cHandles.nvcuda != nil {
|
|
C.nvcuda_get_free(*cHandles.nvcuda, C.int(gpu.index), &memInfo.free, &memInfo.total)
|
|
memInfo.used = memInfo.total - memInfo.free
|
|
} else {
|
|
// shouldn't happen
|
|
slog.Warn("no valid cuda library loaded to refresh vram usage")
|
|
break
|
|
}
|
|
if memInfo.err != nil {
|
|
slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
|
|
C.free(unsafe.Pointer(memInfo.err))
|
|
continue
|
|
}
|
|
if memInfo.free == 0 {
|
|
slog.Warn("error looking up nvidia GPU memory")
|
|
continue
|
|
}
|
|
if cHandles.nvml != nil && gpu.OSOverhead > 0 {
|
|
// When using the management library update based on recorded overhead
|
|
memInfo.free -= C.uint64_t(gpu.OSOverhead)
|
|
}
|
|
slog.Debug("updating cuda memory data",
|
|
"gpu", gpu.ID,
|
|
"name", gpu.Name,
|
|
"overhead", format.HumanBytes2(gpu.OSOverhead),
|
|
slog.Group(
|
|
"before",
|
|
"total", format.HumanBytes2(gpu.TotalMemory),
|
|
"free", format.HumanBytes2(gpu.FreeMemory),
|
|
),
|
|
slog.Group(
|
|
"now",
|
|
"total", format.HumanBytes2(uint64(memInfo.total)),
|
|
"free", format.HumanBytes2(uint64(memInfo.free)),
|
|
"used", format.HumanBytes2(uint64(memInfo.used)),
|
|
),
|
|
)
|
|
cudaGPUs[i].FreeMemory = uint64(memInfo.free)
|
|
}
|
|
|
|
if oHandles == nil && len(oneapiGPUs) > 0 {
|
|
oHandles = initOneAPIHandles()
|
|
}
|
|
for i, gpu := range oneapiGPUs {
|
|
if oHandles.oneapi == nil {
|
|
// shouldn't happen
|
|
slog.Warn("nil oneapi handle with device count", "count", oHandles.deviceCount)
|
|
continue
|
|
}
|
|
C.oneapi_check_vram(*oHandles.oneapi, C.int(gpu.driverIndex), C.int(gpu.gpuIndex), &memInfo)
|
|
// TODO - convert this to MinimumMemory based on testing...
|
|
var totalFreeMem float64 = float64(memInfo.free) * 0.95 // work-around: leave some reserve vram for mkl lib used in ggml-sycl backend.
|
|
memInfo.free = C.uint64_t(totalFreeMem)
|
|
oneapiGPUs[i].FreeMemory = uint64(memInfo.free)
|
|
}
|
|
|
|
err = RocmGPUInfoList(rocmGPUs).RefreshFreeMemory()
|
|
if err != nil {
|
|
slog.Debug("problem refreshing ROCm free memory", "error", err)
|
|
}
|
|
}
|
|
|
|
resp := []GpuInfo{}
|
|
for _, gpu := range cudaGPUs {
|
|
resp = append(resp, gpu.GpuInfo)
|
|
}
|
|
for _, gpu := range rocmGPUs {
|
|
resp = append(resp, gpu.GpuInfo)
|
|
}
|
|
for _, gpu := range oneapiGPUs {
|
|
resp = append(resp, gpu.GpuInfo)
|
|
}
|
|
if len(resp) == 0 {
|
|
resp = append(resp, cpus[0].GpuInfo)
|
|
}
|
|
return resp
|
|
}
|
|
|
|
func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
|
|
// Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
|
|
var ldPaths []string
|
|
gpuLibPaths := []string{}
|
|
slog.Debug("Searching for GPU library", "name", baseLibName)
|
|
|
|
// Start with our bundled libraries
|
|
patterns := []string{}
|
|
for _, d := range LibraryDirs() {
|
|
patterns = append(patterns, filepath.Join(d, baseLibName))
|
|
}
|
|
|
|
switch runtime.GOOS {
|
|
case "windows":
|
|
ldPaths = strings.Split(os.Getenv("PATH"), ";")
|
|
case "linux":
|
|
ldPaths = strings.Split(os.Getenv("LD_LIBRARY_PATH"), ":")
|
|
default:
|
|
return gpuLibPaths
|
|
}
|
|
|
|
// Then with whatever we find in the PATH/LD_LIBRARY_PATH
|
|
for _, ldPath := range ldPaths {
|
|
d, err := filepath.Abs(ldPath)
|
|
if err != nil {
|
|
continue
|
|
}
|
|
patterns = append(patterns, filepath.Join(d, baseLibName))
|
|
}
|
|
patterns = append(patterns, defaultPatterns...)
|
|
slog.Debug("gpu library search", "globs", patterns)
|
|
for _, pattern := range patterns {
|
|
|
|
// Nvidia PhysX known to return bogus results
|
|
if strings.Contains(pattern, "PhysX") {
|
|
slog.Debug("skipping PhysX cuda library path", "path", pattern)
|
|
continue
|
|
}
|
|
// Ignore glob discovery errors
|
|
matches, _ := filepath.Glob(pattern)
|
|
for _, match := range matches {
|
|
// Resolve any links so we don't try the same lib multiple times
|
|
// and weed out any dups across globs
|
|
libPath := match
|
|
tmp := match
|
|
var err error
|
|
for ; err == nil; tmp, err = os.Readlink(libPath) {
|
|
if !filepath.IsAbs(tmp) {
|
|
tmp = filepath.Join(filepath.Dir(libPath), tmp)
|
|
}
|
|
libPath = tmp
|
|
}
|
|
new := true
|
|
for _, cmp := range gpuLibPaths {
|
|
if cmp == libPath {
|
|
new = false
|
|
break
|
|
}
|
|
}
|
|
if new {
|
|
gpuLibPaths = append(gpuLibPaths, libPath)
|
|
}
|
|
}
|
|
}
|
|
slog.Debug("discovered GPU libraries", "paths", gpuLibPaths)
|
|
return gpuLibPaths
|
|
}
|
|
|
|
// Bootstrap the runtime library
|
|
// Returns: num devices, handle, libPath, error
|
|
func loadCUDARTMgmt(cudartLibPaths []string) (int, *C.cudart_handle_t, string, error) {
|
|
var resp C.cudart_init_resp_t
|
|
resp.ch.verbose = getVerboseState()
|
|
var err error
|
|
for _, libPath := range cudartLibPaths {
|
|
lib := C.CString(libPath)
|
|
defer C.free(unsafe.Pointer(lib))
|
|
C.cudart_init(lib, &resp)
|
|
if resp.err != nil {
|
|
err = fmt.Errorf("Unable to load cudart library %s: %s", libPath, C.GoString(resp.err))
|
|
slog.Debug(err.Error())
|
|
C.free(unsafe.Pointer(resp.err))
|
|
} else {
|
|
err = nil
|
|
return int(resp.num_devices), &resp.ch, libPath, err
|
|
}
|
|
}
|
|
return 0, nil, "", err
|
|
}
|
|
|
|
// Bootstrap the driver library
|
|
// Returns: num devices, handle, libPath, error
|
|
func loadNVCUDAMgmt(nvcudaLibPaths []string) (int, *C.nvcuda_handle_t, string, error) {
|
|
var resp C.nvcuda_init_resp_t
|
|
resp.ch.verbose = getVerboseState()
|
|
var err error
|
|
for _, libPath := range nvcudaLibPaths {
|
|
lib := C.CString(libPath)
|
|
defer C.free(unsafe.Pointer(lib))
|
|
C.nvcuda_init(lib, &resp)
|
|
if resp.err != nil {
|
|
// Decide what log level based on the type of error message to help users understand why
|
|
switch resp.cudaErr {
|
|
case C.CUDA_ERROR_INSUFFICIENT_DRIVER, C.CUDA_ERROR_SYSTEM_DRIVER_MISMATCH:
|
|
err = fmt.Errorf("version mismatch between driver and cuda driver library - reboot or upgrade may be required: library %s", libPath)
|
|
slog.Warn(err.Error())
|
|
case C.CUDA_ERROR_NO_DEVICE:
|
|
err = fmt.Errorf("no nvidia devices detected by library %s", libPath)
|
|
slog.Info(err.Error())
|
|
case C.CUDA_ERROR_UNKNOWN:
|
|
err = fmt.Errorf("unknown error initializing cuda driver library %s: %s. see https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for more information", libPath, C.GoString(resp.err))
|
|
slog.Warn(err.Error())
|
|
default:
|
|
msg := C.GoString(resp.err)
|
|
if strings.Contains(msg, "wrong ELF class") {
|
|
slog.Debug("skipping 32bit library", "library", libPath)
|
|
} else {
|
|
err = fmt.Errorf("Unable to load cudart library %s: %s", libPath, C.GoString(resp.err))
|
|
slog.Info(err.Error())
|
|
}
|
|
}
|
|
C.free(unsafe.Pointer(resp.err))
|
|
} else {
|
|
err = nil
|
|
return int(resp.num_devices), &resp.ch, libPath, err
|
|
}
|
|
}
|
|
return 0, nil, "", err
|
|
}
|
|
|
|
// Bootstrap the management library
|
|
// Returns: handle, libPath, error
|
|
func loadNVMLMgmt(nvmlLibPaths []string) (*C.nvml_handle_t, string, error) {
|
|
var resp C.nvml_init_resp_t
|
|
resp.ch.verbose = getVerboseState()
|
|
var err error
|
|
for _, libPath := range nvmlLibPaths {
|
|
lib := C.CString(libPath)
|
|
defer C.free(unsafe.Pointer(lib))
|
|
C.nvml_init(lib, &resp)
|
|
if resp.err != nil {
|
|
err = fmt.Errorf("Unable to load NVML management library %s: %s", libPath, C.GoString(resp.err))
|
|
slog.Info(err.Error())
|
|
C.free(unsafe.Pointer(resp.err))
|
|
} else {
|
|
err = nil
|
|
return &resp.ch, libPath, err
|
|
}
|
|
}
|
|
return nil, "", err
|
|
}
|
|
|
|
// bootstrap the Intel GPU library
|
|
// Returns: num devices, handle, libPath, error
|
|
func loadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string, error) {
|
|
var resp C.oneapi_init_resp_t
|
|
num_devices := 0
|
|
resp.oh.verbose = getVerboseState()
|
|
var err error
|
|
for _, libPath := range oneapiLibPaths {
|
|
lib := C.CString(libPath)
|
|
defer C.free(unsafe.Pointer(lib))
|
|
C.oneapi_init(lib, &resp)
|
|
if resp.err != nil {
|
|
err = fmt.Errorf("Unable to load oneAPI management library %s: %s", libPath, C.GoString(resp.err))
|
|
slog.Debug(err.Error())
|
|
C.free(unsafe.Pointer(resp.err))
|
|
} else {
|
|
err = nil
|
|
for i := range resp.oh.num_drivers {
|
|
num_devices += int(C.oneapi_get_device_count(resp.oh, C.int(i)))
|
|
}
|
|
return num_devices, &resp.oh, libPath, err
|
|
}
|
|
}
|
|
return 0, nil, "", err
|
|
}
|
|
|
|
func getVerboseState() C.uint16_t {
|
|
if envconfig.Debug() {
|
|
return C.uint16_t(1)
|
|
}
|
|
return C.uint16_t(0)
|
|
}
|
|
|
|
// Given the list of GPUs this instantiation is targeted for,
|
|
// figure out the visible devices environment variable
|
|
//
|
|
// If different libraries are detected, the first one is what we use
|
|
func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
|
|
if len(l) == 0 {
|
|
return "", ""
|
|
}
|
|
switch l[0].Library {
|
|
case "cuda":
|
|
return cudaGetVisibleDevicesEnv(l)
|
|
case "rocm":
|
|
return rocmGetVisibleDevicesEnv(l)
|
|
case "oneapi":
|
|
return oneapiGetVisibleDevicesEnv(l)
|
|
default:
|
|
slog.Debug("no filter required for library " + l[0].Library)
|
|
return "", ""
|
|
}
|
|
}
|
|
|
|
func LibraryDirs() []string {
|
|
// dependencies can exist wherever we found the runners (e.g. build tree for developers) and relative to the executable
|
|
// This can be simplified once we no longer carry runners as payloads
|
|
paths := []string{}
|
|
appExe, err := os.Executable()
|
|
if err != nil {
|
|
slog.Warn("failed to lookup executable path", "error", err)
|
|
} else {
|
|
appRelative := filepath.Join(filepath.Dir(appExe), envconfig.LibRelativeToExe(), "lib", "ollama")
|
|
if _, err := os.Stat(appRelative); err == nil {
|
|
paths = append(paths, appRelative)
|
|
}
|
|
}
|
|
rDir := runners.Locate()
|
|
if err != nil {
|
|
slog.Warn("unable to locate gpu dependency libraries", "error", err)
|
|
} else {
|
|
paths = append(paths, filepath.Dir(rDir))
|
|
}
|
|
return paths
|
|
}
|
|
|
|
func GetSystemInfo() SystemInfo {
|
|
gpus := GetGPUInfo()
|
|
gpuMutex.Lock()
|
|
defer gpuMutex.Unlock()
|
|
discoveryErrors := []string{}
|
|
for _, err := range bootstrapErrors {
|
|
discoveryErrors = append(discoveryErrors, err.Error())
|
|
}
|
|
if len(gpus) == 1 && gpus[0].Library == "cpu" {
|
|
gpus = []GpuInfo{}
|
|
}
|
|
|
|
return SystemInfo{
|
|
System: cpus[0],
|
|
GPUs: gpus,
|
|
UnsupportedGPUs: unsupportedGPUs,
|
|
DiscoveryErrors: discoveryErrors,
|
|
}
|
|
}
|