mirror of
https://github.com/ollama/ollama.git
synced 2025-03-22 07:42:49 +01:00
179 lines
6.3 KiB
Plaintext
Vendored
179 lines
6.3 KiB
Plaintext
Vendored
/**
|
|
* llama.cpp - commit 46e3556e01b824e52395fb050b29804b6cff2a7c - do not edit this file
|
|
*
|
|
* MIT License
|
|
*
|
|
* Copyright (c) 2023-2024 The ggml authors
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include "mmq.cuh"
|
|
|
|
void ggml_cuda_op_mul_mat_q(
|
|
ggml_backend_cuda_context & ctx,
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
|
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
|
const int64_t src1_padded_row_size, cudaStream_t stream) {
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
const int64_t ne11 = src1->ne[1];
|
|
GGML_ASSERT(ne10 % QK8_1 == 0);
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
|
|
const int64_t row_diff = row_high - row_low;
|
|
const int64_t stride00 = ne00 / ggml_blck_size(src0->type);
|
|
|
|
int id = ggml_cuda_get_device();
|
|
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
|
|
|
// the main device has a larger memory buffer to hold the results from all GPUs
|
|
// nrows_dst == nrows of the matrix that the kernel writes into
|
|
const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;
|
|
|
|
// The stream-k decomposition is only faster for recent NVIDIA GPUs.
|
|
// Also its fixup needs to allocate a temporary buffer in the memory pool.
|
|
// There are multiple parallel CUDA streams for src1_ncols != ne11 which would introduce a race condition for this buffer.
|
|
const bool use_stream_k = compute_capability >= GGML_CUDA_CC_VOLTA && compute_capability < GGML_CUDA_CC_OFFSET_AMD && src1_ncols == ne11;
|
|
const mmq_args args = {src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stride00, src1_padded_row_size, src1_ncols, ne11, nrows_dst, use_stream_k};
|
|
|
|
switch (src0->type) {
|
|
case GGML_TYPE_Q4_0:
|
|
mul_mat_q_case<GGML_TYPE_Q4_0>(ctx, args, stream);
|
|
break;
|
|
case GGML_TYPE_Q4_1:
|
|
mul_mat_q_case<GGML_TYPE_Q4_1>(ctx, args, stream);
|
|
break;
|
|
case GGML_TYPE_Q5_0:
|
|
mul_mat_q_case<GGML_TYPE_Q5_0>(ctx, args, stream);
|
|
break;
|
|
case GGML_TYPE_Q5_1:
|
|
mul_mat_q_case<GGML_TYPE_Q5_1>(ctx, args, stream);
|
|
break;
|
|
case GGML_TYPE_Q8_0:
|
|
mul_mat_q_case<GGML_TYPE_Q8_0>(ctx, args, stream);
|
|
break;
|
|
case GGML_TYPE_Q2_K:
|
|
mul_mat_q_case<GGML_TYPE_Q2_K>(ctx, args, stream);
|
|
break;
|
|
case GGML_TYPE_Q3_K:
|
|
mul_mat_q_case<GGML_TYPE_Q3_K>(ctx, args, stream);
|
|
break;
|
|
case GGML_TYPE_Q4_K:
|
|
mul_mat_q_case<GGML_TYPE_Q4_K>(ctx, args, stream);
|
|
break;
|
|
case GGML_TYPE_Q5_K:
|
|
mul_mat_q_case<GGML_TYPE_Q5_K>(ctx, args, stream);
|
|
break;
|
|
case GGML_TYPE_Q6_K:
|
|
mul_mat_q_case<GGML_TYPE_Q6_K>(ctx, args, stream);
|
|
break;
|
|
case GGML_TYPE_IQ2_XXS:
|
|
mul_mat_q_case<GGML_TYPE_IQ2_XXS>(ctx, args, stream);
|
|
break;
|
|
case GGML_TYPE_IQ2_XS:
|
|
mul_mat_q_case<GGML_TYPE_IQ2_XS>(ctx, args, stream);
|
|
break;
|
|
case GGML_TYPE_IQ2_S:
|
|
mul_mat_q_case<GGML_TYPE_IQ2_S>(ctx, args, stream);
|
|
break;
|
|
case GGML_TYPE_IQ3_XXS:
|
|
mul_mat_q_case<GGML_TYPE_IQ3_XXS>(ctx, args, stream);
|
|
break;
|
|
case GGML_TYPE_IQ3_S:
|
|
mul_mat_q_case<GGML_TYPE_IQ3_S>(ctx, args, stream);
|
|
break;
|
|
case GGML_TYPE_IQ1_S:
|
|
mul_mat_q_case<GGML_TYPE_IQ1_S>(ctx, args, stream);
|
|
break;
|
|
case GGML_TYPE_IQ4_XS:
|
|
mul_mat_q_case<GGML_TYPE_IQ4_XS>(ctx, args, stream);
|
|
break;
|
|
case GGML_TYPE_IQ4_NL:
|
|
mul_mat_q_case<GGML_TYPE_IQ4_NL>(ctx, args, stream);
|
|
break;
|
|
default:
|
|
GGML_ABORT("fatal error");
|
|
break;
|
|
}
|
|
|
|
GGML_UNUSED(src1);
|
|
GGML_UNUSED(dst);
|
|
GGML_UNUSED(src1_ddf_i);
|
|
}
|
|
|
|
bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
|
|
#ifdef GGML_CUDA_FORCE_CUBLAS
|
|
return false;
|
|
#endif // GGML_CUDA_FORCE_CUBLAS
|
|
|
|
bool mmq_supported;
|
|
|
|
switch (type) {
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q4_1:
|
|
case GGML_TYPE_Q5_0:
|
|
case GGML_TYPE_Q5_1:
|
|
case GGML_TYPE_Q8_0:
|
|
case GGML_TYPE_Q2_K:
|
|
case GGML_TYPE_Q3_K:
|
|
case GGML_TYPE_Q4_K:
|
|
case GGML_TYPE_Q5_K:
|
|
case GGML_TYPE_Q6_K:
|
|
case GGML_TYPE_IQ2_XXS:
|
|
case GGML_TYPE_IQ2_XS:
|
|
case GGML_TYPE_IQ2_S:
|
|
case GGML_TYPE_IQ3_XXS:
|
|
case GGML_TYPE_IQ3_S:
|
|
case GGML_TYPE_IQ1_S:
|
|
case GGML_TYPE_IQ4_XS:
|
|
case GGML_TYPE_IQ4_NL:
|
|
mmq_supported = true;
|
|
break;
|
|
default:
|
|
mmq_supported = false;
|
|
break;
|
|
}
|
|
|
|
if (!mmq_supported) {
|
|
return false;
|
|
}
|
|
|
|
if (int8_mma_available(cc)) {
|
|
return true;
|
|
}
|
|
|
|
if (cc < GGML_CUDA_CC_DP4A) {
|
|
return false;
|
|
}
|
|
|
|
#ifdef GGML_CUDA_FORCE_MMQ
|
|
return true;
|
|
#endif //GGML_CUDA_FORCE_MMQ
|
|
|
|
if (cc < GGML_CUDA_CC_OFFSET_AMD) {
|
|
return cc < GGML_CUDA_CC_VOLTA || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
|
|
}
|
|
|
|
return (cc < GGML_CUDA_CC_RDNA3 && cc != GGML_CUDA_CC_CDNA && cc != GGML_CUDA_CC_VEGA20) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
|
|
}
|