mirror of
https://github.com/ollama/ollama.git
synced 2025-03-25 17:21:49 +01:00
112 lines
3.2 KiB
C++
Vendored
112 lines
3.2 KiB
C++
Vendored
/**
|
|
* llama.cpp - commit 46e3556e01b824e52395fb050b29804b6cff2a7c - do not edit this file
|
|
*
|
|
* MIT License
|
|
*
|
|
* Copyright (c) 2023-2024 The ggml authors
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include "llama-hparams.h"
|
|
|
|
#include "ggml.h"
|
|
|
|
#include <algorithm>
|
|
|
|
uint32_t llama_hparams::n_head(uint32_t il) const {
|
|
if (il < n_layer) {
|
|
return n_head_arr[il];
|
|
}
|
|
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
|
|
uint32_t llama_hparams::n_head_kv(uint32_t il) const {
|
|
if (il < n_layer) {
|
|
return n_head_kv_arr[il];
|
|
}
|
|
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
|
|
uint32_t llama_hparams::n_ff(uint32_t il) const {
|
|
if (il < n_layer) {
|
|
return n_ff_arr[il];
|
|
}
|
|
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
|
|
uint32_t llama_hparams::n_gqa(uint32_t il) const {
|
|
const uint32_t n_head = this->n_head(il);
|
|
const uint32_t n_head_kv = this->n_head_kv(il);
|
|
|
|
if (n_head_kv == 0) {
|
|
return 0;
|
|
}
|
|
|
|
return n_head/n_head_kv;
|
|
}
|
|
|
|
uint32_t llama_hparams::n_embd_k_gqa(uint32_t il) const {
|
|
const uint32_t n_head_kv = this->n_head_kv(il);
|
|
|
|
return n_embd_head_k * n_head_kv;
|
|
}
|
|
|
|
uint32_t llama_hparams::n_embd_v_gqa(uint32_t il) const {
|
|
const uint32_t n_head_kv = this->n_head_kv(il);
|
|
|
|
return n_embd_head_v * n_head_kv;
|
|
}
|
|
|
|
uint32_t llama_hparams::n_embd_k_s() const {
|
|
if (wkv_head_size != 0) {
|
|
// for RWKV models
|
|
return 2 * n_embd;
|
|
}
|
|
|
|
// TODO: maybe support other convolution strides than 1
|
|
// NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
|
|
return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
|
|
}
|
|
|
|
uint32_t llama_hparams::n_embd_v_s() const {
|
|
if (wkv_head_size != 0) {
|
|
// corresponds to RWKV's wkv_states size
|
|
return n_embd * wkv_head_size;
|
|
}
|
|
|
|
// corresponds to Mamba's ssm_states size
|
|
return ssm_d_state * ssm_d_inner;
|
|
}
|
|
|
|
bool llama_hparams::n_bskcn(uint32_t n, uint32_t il) const {
|
|
if (il < n_layer) {
|
|
return n_bskcn_arr[n][il] > 0;
|
|
}
|
|
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
|
|
bool llama_hparams::cross_attention_layers(uint32_t il) const {
|
|
return std::find(cross_attn_layers.begin(), cross_attn_layers.end(), il) != cross_attn_layers.end();
|
|
}
|