Jesse Gross ed443a0393 Runner for Ollama engine
This provides integration with the new Ollama engine
(5824541 next ollama runner (#7913)) and the rest of the Ollama
infrastructure such as the runner and Ollama server.

In addition, it also builds out the KV cache infrastructure to
support requirements of how Ollama runs models such as:
 - Parallel processing
 - Memory management for defragmentation and shifting
 - Multi-modal modals

Both old and new engines continue to be supported. By default, only
the old engine is used. To enable the new engine:

Start the server with the OLLAMA_NEW_ENGINE environment variable set:
OLLAMA_NEW_ENGINE=1 ./ollama serve

Start a model that is supported by the Ollama engine. This one is Llama 3.1 8b Q4_K_M:
./ollama run jessegross/llama3.1
2025-02-13 17:09:26 -08:00

184 lines
3.9 KiB
Go

package llamarunner
import (
"errors"
"fmt"
"hash/maphash"
"log/slog"
"slices"
"sync"
"time"
"github.com/ollama/ollama/llama"
)
const imageCacheSize = 4
type ImageContext struct {
// mu is required to be held when generating embeddings or accessing the cache
mu sync.Mutex
clip *llama.ClipContext
mllama *llama.MllamaContext
// cache of images to embeddings
images []imageCache
imageHash maphash.Hash
}
func NewImageContext(llamaContext *llama.Context, modelPath string) (*ImageContext, error) {
arch, err := llama.GetModelArch(modelPath)
if err != nil {
return nil, fmt.Errorf("unable to determine vision architecture: %w (%s)", err, modelPath)
}
var c ImageContext
if arch == "clip" {
c.clip, err = llama.NewClipContext(llamaContext, modelPath)
} else if arch == "mllama" {
c.mllama, err = llama.NewMllamaContext(llamaContext, modelPath)
} else {
return nil, fmt.Errorf("unknown vision model architecture: %s", arch)
}
if err != nil {
return nil, err
}
c.images = make([]imageCache, imageCacheSize)
return &c, nil
}
func (c *ImageContext) Free(modelPath string) {
if c == nil {
return
}
if c.clip != nil {
c.clip.Free()
}
if c.mllama != nil {
c.mllama.Free()
}
}
func (c *ImageContext) NewEmbed(llamaContext *llama.Context, data []byte, aspectRatioId int) ([][]float32, error) {
if c == nil {
return nil, nil
}
if len(data) <= 0 {
return nil, errors.New("received zero length image")
}
hash := c.hashImage(data)
c.mu.Lock()
defer c.mu.Unlock()
embed, err := c.findImage(hash)
if err != nil {
if c.mllama != nil {
embed, err = c.mllama.NewEmbed(llamaContext, data, aspectRatioId)
if err != nil {
return nil, err
}
} else if c.clip != nil {
embed, err = c.clip.NewEmbed(llamaContext, data)
if err != nil {
return nil, err
}
} else {
return nil, errors.New("received image but vision model not loaded")
}
c.addImage(hash, embed)
}
return embed, nil
}
func (c *ImageContext) BatchSize(configuredBatchSize int) int {
// If images are not supported, we don't need to allocate embedding batches
if c == nil {
return 0
}
// Mllama maps an image to 1 embedding token (llava creates many tokens)
// and doesn't support more than a single image per request.
// The embeddings are large (100 MB), so allocating a big batch can fail
// on some systems
if c.mllama != nil {
return 1
}
return configuredBatchSize
}
func (c *ImageContext) EmbedSize(llamaContext *llama.Context) int {
if c != nil && c.mllama != nil {
return c.mllama.EmbedSize(llamaContext)
} else {
return llamaContext.Model().NEmbd()
}
}
func (c *ImageContext) NeedCrossAttention(inputs ...input) bool {
if c == nil || c.mllama == nil {
return false
}
return slices.ContainsFunc(inputs, func(input input) bool {
return input.embed != nil
})
}
type imageCache struct {
key uint64
val [][]float32
lastUsed time.Time
}
func (c *ImageContext) hashImage(image []byte) uint64 {
c.imageHash.Reset()
_, _ = c.imageHash.Write(image)
return c.imageHash.Sum64()
}
var errImageNotFound = errors.New("image not found in cache")
func (c *ImageContext) findImage(hash uint64) ([][]float32, error) {
for i := range c.images {
if c.images[i].key == hash {
slog.Debug("loading image embeddings from cache", "entry", i)
c.images[i].lastUsed = time.Now()
return c.images[i].val, nil
}
}
return nil, errImageNotFound
}
func (c *ImageContext) addImage(hash uint64, embed [][]float32) {
best := time.Now()
var bestImage int
for i := range c.images {
if c.images[i].key == hash {
bestImage = i
break
}
if c.images[i].lastUsed.Compare(best) < 0 {
best = c.images[i].lastUsed
bestImage = i
}
}
slog.Debug("storing image embeddings in cache", "entry", bestImage, "used", c.images[bestImage].lastUsed)
c.images[bestImage].key = hash
c.images[bestImage].val = embed
c.images[bestImage].lastUsed = time.Now()
}