mirror of
https://github.com/ollama/ollama.git
synced 2025-03-25 17:21:49 +01:00
143 lines
5.1 KiB
Go
143 lines
5.1 KiB
Go
package convert
|
|
|
|
import (
|
|
"cmp"
|
|
|
|
"github.com/ollama/ollama/fs/ggml"
|
|
)
|
|
|
|
type gemma3Model struct {
|
|
gemmaModel
|
|
Architecture string
|
|
TextModel struct {
|
|
HeadDim uint32 `json:"head_dim"`
|
|
HiddenSize uint32 `json:"hidden_size"`
|
|
HiddenLayers uint32 `json:"num_hidden_layers"`
|
|
IntermediateSize uint32 `json:"intermediate_size"`
|
|
SlidingWindow uint32 `json:"sliding_window"`
|
|
} `json:"text_config"`
|
|
VisionModel struct {
|
|
NumAttentionHeads uint32 `json:"num_attention_heads"` // attention.head_count 16
|
|
LayerNormEpsilon float32 `json:"layer_norm_eps"` // attention.layer_norm_epsilon 1e-05
|
|
NumHiddenLayers uint32 `json:"num_hidden_layers"` // block_count 32
|
|
HiddenSize uint32 `json:"hidden_size"` // embedding_length 1280
|
|
IntermediateSize uint32 `json:"intermediate_size"` // feed_forward_length 5120
|
|
ImageSize uint32 `json:"image_size"` // image_size 560
|
|
NumChannels uint32 `json:"num_channels"` // num_channels 3
|
|
PatchSize uint32 `json:"patch_size"` // patch_size 14
|
|
} `json:"vision_config"`
|
|
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
|
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
|
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
|
RMSNormEPS float32 `json:"rms_norm_eps"`
|
|
HeadDim uint32 `json:"head_dim"`
|
|
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
|
|
RopeLocalTheta float32 `json:"rope_local_base_freq"`
|
|
RopeGlobalTheta float32 `json:"rope_global_base_freq"`
|
|
SlidingWindow uint32 `json:"sliding_window"`
|
|
MultiModalTokensPerImage uint32 `json:"mm_tokens_per_image"`
|
|
}
|
|
|
|
const (
|
|
gemma4BLayerCount = 34
|
|
gemma12BLayerCount = 48
|
|
gemma27BLayerCount = 62
|
|
)
|
|
|
|
func (p *gemma3Model) KV(t *Tokenizer) ggml.KV {
|
|
kv := p.ModelParameters.KV(t)
|
|
kv["general.architecture"] = "gemma3"
|
|
|
|
numBlocks := cmp.Or(p.HiddenLayers, p.TextModel.HiddenLayers)
|
|
kv["gemma3.block_count"] = numBlocks
|
|
|
|
var (
|
|
numHeads uint32
|
|
numKVHeads uint32
|
|
)
|
|
|
|
switch numBlocks {
|
|
case gemma4BLayerCount:
|
|
numHeads = 8
|
|
numKVHeads = 4
|
|
case gemma12BLayerCount:
|
|
numHeads = 16
|
|
numKVHeads = 8
|
|
case gemma27BLayerCount:
|
|
numHeads = 32
|
|
numKVHeads = 16
|
|
default:
|
|
numHeads = p.NumAttentionHeads
|
|
numKVHeads = p.NumKeyValueHeads
|
|
}
|
|
|
|
kv["gemma3.attention.head_count"] = numHeads
|
|
kv["gemma3.attention.head_count_kv"] = numKVHeads
|
|
|
|
switch p.Architecture {
|
|
case "Gemma3ForCausalLM":
|
|
kv["gemma3.context_length"] = p.MaxPositionEmbeddings
|
|
kv["gemma3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
|
|
kv["gemma3.attention.key_length"] = p.HeadDim
|
|
kv["gemma3.attention.value_length"] = p.HeadDim
|
|
kv["gemma3.attention.sliding_window"] = p.SlidingWindow
|
|
kv["gemma3.final_logit_softcapping"] = cmp.Or(p.FinalLogitSoftcap, 30)
|
|
kv["gemma3.rope.local.freq_base"] = cmp.Or(p.RopeLocalTheta, 10000.0)
|
|
kv["gemma3.rope.global.freq_base"] = cmp.Or(p.RopeGlobalTheta, 1000000.0)
|
|
kv["gemma3.embedding_length"] = p.HiddenSize
|
|
kv["gemma3.feed_forward_length"] = p.IntermediateSize
|
|
default:
|
|
kv["gemma3.context_length"] = cmp.Or(p.MaxPositionEmbeddings, 131072)
|
|
kv["gemma3.embedding_length"] = p.TextModel.HiddenSize
|
|
kv["gemma3.feed_forward_length"] = p.TextModel.IntermediateSize
|
|
kv["gemma3.attention.sliding_window"] = p.TextModel.SlidingWindow
|
|
kv["gemma3.vision.block_count"] = p.VisionModel.NumHiddenLayers
|
|
kv["gemma3.vision.embedding_length"] = p.VisionModel.HiddenSize
|
|
kv["gemma3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
|
|
kv["gemma3.vision.image_size"] = p.VisionModel.ImageSize
|
|
kv["gemma3.vision.patch_size"] = p.VisionModel.PatchSize
|
|
kv["gemma3.vision.num_channels"] = cmp.Or(p.VisionModel.NumChannels, 3)
|
|
kv["gemma3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
|
|
kv["gemma3.vision.attention.layer_norm_epsilon"] = cmp.Or(p.VisionModel.LayerNormEpsilon, 1e-6)
|
|
kv["gemma3.attention.key_length"] = cmp.Or(p.TextModel.HeadDim, 256)
|
|
kv["gemma3.attention.value_length"] = cmp.Or(p.TextModel.HeadDim, 256)
|
|
}
|
|
|
|
if p.MultiModalTokensPerImage > 0 {
|
|
kv["gemma3.mm.tokens_per_image"] = p.MultiModalTokensPerImage
|
|
}
|
|
|
|
return kv
|
|
}
|
|
|
|
func (p *gemma3Model) Replacements() []string {
|
|
return []string{
|
|
"lm_head", "output",
|
|
"model.embed_tokens", "token_embd",
|
|
"model.norm", "output_norm",
|
|
"vision_tower.vision_model.embeddings", "v",
|
|
"vision_tower.vision_model", "v",
|
|
"vision_model.vision_model.embeddings", "v",
|
|
"vision_model.vision_model", "v",
|
|
"language_model.", "",
|
|
"model.layers", "blk",
|
|
"encoder.layers", "blk",
|
|
"input_layernorm", "attn_norm",
|
|
"self_attn.q_proj", "attn_q",
|
|
"self_attn.q_norm", "attn_q_norm",
|
|
"self_attn.k_proj", "attn_k",
|
|
"self_attn.k_norm", "attn_k_norm",
|
|
"self_attn.v_proj", "attn_v",
|
|
"self_attn.o_proj", "attn_output",
|
|
"self_attn.out_proj", "attn_output",
|
|
"mlp.gate_proj", "ffn_gate",
|
|
"mlp.down_proj", "ffn_down",
|
|
"mlp.up_proj", "ffn_up",
|
|
"post_attention_layernorm", "post_attention_norm",
|
|
"pre_feedforward_layernorm", "ffn_norm",
|
|
"post_feedforward_layernorm", "post_ffw_norm",
|
|
"input_projection_weight", "input_projection.weight",
|
|
"multi_modal_projector", "mm",
|
|
}
|
|
}
|