mirror of
https://github.com/open-webui/open-webui.git
synced 2025-03-29 19:22:29 +01:00
Merge pull request #11324 from kela4/main
fix: opensearch vector db query structures, result mapping, filters, bulk query actions, knn_vector usage
This commit is contained in:
commit
22b88f9593
@ -1,4 +1,5 @@
|
||||
from opensearchpy import OpenSearch
|
||||
from opensearchpy.helpers import bulk
|
||||
from typing import Optional
|
||||
|
||||
from open_webui.retrieval.vector.main import VectorItem, SearchResult, GetResult
|
||||
@ -20,8 +21,14 @@ class OpenSearchClient:
|
||||
verify_certs=OPENSEARCH_CERT_VERIFY,
|
||||
http_auth=(OPENSEARCH_USERNAME, OPENSEARCH_PASSWORD),
|
||||
)
|
||||
|
||||
def _get_index_name(self, collection_name: str) -> str:
|
||||
return f"{self.index_prefix}_{collection_name}"
|
||||
|
||||
def _result_to_get_result(self, result) -> GetResult:
|
||||
if not result["hits"]["hits"]:
|
||||
return None
|
||||
|
||||
ids = []
|
||||
documents = []
|
||||
metadatas = []
|
||||
@ -31,9 +38,12 @@ class OpenSearchClient:
|
||||
documents.append(hit["_source"].get("text"))
|
||||
metadatas.append(hit["_source"].get("metadata"))
|
||||
|
||||
return GetResult(ids=ids, documents=documents, metadatas=metadatas)
|
||||
return GetResult(ids=[ids], documents=[documents], metadatas=[metadatas])
|
||||
|
||||
def _result_to_search_result(self, result) -> SearchResult:
|
||||
if not result["hits"]["hits"]:
|
||||
return None
|
||||
|
||||
ids = []
|
||||
distances = []
|
||||
documents = []
|
||||
@ -46,25 +56,32 @@ class OpenSearchClient:
|
||||
metadatas.append(hit["_source"].get("metadata"))
|
||||
|
||||
return SearchResult(
|
||||
ids=ids, distances=distances, documents=documents, metadatas=metadatas
|
||||
ids=[ids], distances=[distances], documents=[documents], metadatas=[metadatas]
|
||||
)
|
||||
|
||||
def _create_index(self, collection_name: str, dimension: int):
|
||||
body = {
|
||||
"settings": {
|
||||
"index": {
|
||||
"knn": True
|
||||
}
|
||||
},
|
||||
"mappings": {
|
||||
"properties": {
|
||||
"id": {"type": "keyword"},
|
||||
"vector": {
|
||||
"type": "dense_vector",
|
||||
"dims": dimension, # Adjust based on your vector dimensions
|
||||
"index": true,
|
||||
"type": "knn_vector",
|
||||
"dimension": dimension, # Adjust based on your vector dimensions
|
||||
"index": True,
|
||||
"similarity": "faiss",
|
||||
"method": {
|
||||
"name": "hnsw",
|
||||
"space_type": "ip", # Use inner product to approximate cosine similarity
|
||||
"space_type": "innerproduct", # Use inner product to approximate cosine similarity
|
||||
"engine": "faiss",
|
||||
"ef_construction": 128,
|
||||
"m": 16,
|
||||
"parameters": {
|
||||
"ef_construction": 128,
|
||||
"m": 16,
|
||||
}
|
||||
},
|
||||
},
|
||||
"text": {"type": "text"},
|
||||
@ -73,7 +90,7 @@ class OpenSearchClient:
|
||||
}
|
||||
}
|
||||
self.client.indices.create(
|
||||
index=f"{self.index_prefix}_{collection_name}", body=body
|
||||
index=self._get_index_name(collection_name), body=body
|
||||
)
|
||||
|
||||
def _create_batches(self, items: list[VectorItem], batch_size=100):
|
||||
@ -84,38 +101,49 @@ class OpenSearchClient:
|
||||
# has_collection here means has index.
|
||||
# We are simply adapting to the norms of the other DBs.
|
||||
return self.client.indices.exists(
|
||||
index=f"{self.index_prefix}_{collection_name}"
|
||||
index=self._get_index_name(collection_name)
|
||||
)
|
||||
|
||||
def delete_colleciton(self, collection_name: str):
|
||||
def delete_collection(self, collection_name: str):
|
||||
# delete_collection here means delete index.
|
||||
# We are simply adapting to the norms of the other DBs.
|
||||
self.client.indices.delete(index=f"{self.index_prefix}_{collection_name}")
|
||||
self.client.indices.delete(index=self._get_index_name(collection_name))
|
||||
|
||||
def search(
|
||||
self, collection_name: str, vectors: list[list[float]], limit: int
|
||||
self, collection_name: str, vectors: list[list[float | int]], limit: int
|
||||
) -> Optional[SearchResult]:
|
||||
query = {
|
||||
"size": limit,
|
||||
"_source": ["text", "metadata"],
|
||||
"query": {
|
||||
"script_score": {
|
||||
"query": {"match_all": {}},
|
||||
"script": {
|
||||
"source": "cosineSimilarity(params.vector, 'vector') + 1.0",
|
||||
"params": {
|
||||
"vector": vectors[0]
|
||||
}, # Assuming single query vector
|
||||
},
|
||||
}
|
||||
},
|
||||
}
|
||||
try:
|
||||
if not self.has_collection(collection_name):
|
||||
return None
|
||||
|
||||
query = {
|
||||
"size": limit,
|
||||
"_source": ["text", "metadata"],
|
||||
"query": {
|
||||
"script_score": {
|
||||
"query": {
|
||||
"match_all": {}
|
||||
},
|
||||
"script": {
|
||||
"source": "cosineSimilarity(params.query_value, doc[params.field]) + 1.0",
|
||||
"params": {
|
||||
"field": "vector",
|
||||
"query_value": vectors[0]
|
||||
}, # Assuming single query vector
|
||||
},
|
||||
}
|
||||
},
|
||||
}
|
||||
|
||||
result = self.client.search(
|
||||
index=self._get_index_name(collection_name),
|
||||
body=query
|
||||
)
|
||||
|
||||
result = self.client.search(
|
||||
index=f"{self.index_prefix}_{collection_name}", body=query
|
||||
)
|
||||
|
||||
return self._result_to_search_result(result)
|
||||
return self._result_to_search_result(result)
|
||||
|
||||
except Exception as e:
|
||||
return None
|
||||
|
||||
def query(
|
||||
self, collection_name: str, filter: dict, limit: Optional[int] = None
|
||||
@ -124,18 +152,26 @@ class OpenSearchClient:
|
||||
return None
|
||||
|
||||
query_body = {
|
||||
"query": {"bool": {"filter": []}},
|
||||
"query": {
|
||||
"bool": {
|
||||
"filter": []
|
||||
}
|
||||
},
|
||||
"_source": ["text", "metadata"],
|
||||
}
|
||||
|
||||
for field, value in filter.items():
|
||||
query_body["query"]["bool"]["filter"].append({"term": {field: value}})
|
||||
query_body["query"]["bool"]["filter"].append({
|
||||
"match": {
|
||||
"metadata." + str(field): value
|
||||
}
|
||||
})
|
||||
|
||||
size = limit if limit else 10
|
||||
|
||||
try:
|
||||
result = self.client.search(
|
||||
index=f"{self.index_prefix}_{collection_name}",
|
||||
index=self._get_index_name(collection_name),
|
||||
body=query_body,
|
||||
size=size,
|
||||
)
|
||||
@ -146,14 +182,14 @@ class OpenSearchClient:
|
||||
return None
|
||||
|
||||
def _create_index_if_not_exists(self, collection_name: str, dimension: int):
|
||||
if not self.has_index(collection_name):
|
||||
if not self.has_collection(collection_name):
|
||||
self._create_index(collection_name, dimension)
|
||||
|
||||
def get(self, collection_name: str) -> Optional[GetResult]:
|
||||
query = {"query": {"match_all": {}}, "_source": ["text", "metadata"]}
|
||||
|
||||
result = self.client.search(
|
||||
index=f"{self.index_prefix}_{collection_name}", body=query
|
||||
index=self._get_index_name(collection_name), body=query
|
||||
)
|
||||
return self._result_to_get_result(result)
|
||||
|
||||
@ -165,18 +201,18 @@ class OpenSearchClient:
|
||||
for batch in self._create_batches(items):
|
||||
actions = [
|
||||
{
|
||||
"index": {
|
||||
"_id": item["id"],
|
||||
"_source": {
|
||||
"vector": item["vector"],
|
||||
"text": item["text"],
|
||||
"metadata": item["metadata"],
|
||||
},
|
||||
}
|
||||
"_op_type": "index",
|
||||
"_index": self._get_index_name(collection_name),
|
||||
"_id": item["id"],
|
||||
"_source": {
|
||||
"vector": item["vector"],
|
||||
"text": item["text"],
|
||||
"metadata": item["metadata"],
|
||||
},
|
||||
}
|
||||
for item in batch
|
||||
]
|
||||
self.client.bulk(actions)
|
||||
bulk(self.client, actions)
|
||||
|
||||
def upsert(self, collection_name: str, items: list[VectorItem]):
|
||||
self._create_index_if_not_exists(
|
||||
@ -186,27 +222,47 @@ class OpenSearchClient:
|
||||
for batch in self._create_batches(items):
|
||||
actions = [
|
||||
{
|
||||
"index": {
|
||||
"_id": item["id"],
|
||||
"_index": f"{self.index_prefix}_{collection_name}",
|
||||
"_source": {
|
||||
"vector": item["vector"],
|
||||
"text": item["text"],
|
||||
"metadata": item["metadata"],
|
||||
},
|
||||
}
|
||||
"_op_type": "update",
|
||||
"_index": self._get_index_name(collection_name),
|
||||
"_id": item["id"],
|
||||
"doc": {
|
||||
"vector": item["vector"],
|
||||
"text": item["text"],
|
||||
"metadata": item["metadata"],
|
||||
},
|
||||
"doc_as_upsert": True,
|
||||
}
|
||||
for item in batch
|
||||
]
|
||||
self.client.bulk(actions)
|
||||
|
||||
def delete(self, collection_name: str, ids: list[str]):
|
||||
actions = [
|
||||
{"delete": {"_index": f"{self.index_prefix}_{collection_name}", "_id": id}}
|
||||
for id in ids
|
||||
]
|
||||
self.client.bulk(body=actions)
|
||||
bulk(self.client, actions)
|
||||
|
||||
def delete(self, collection_name: str, ids: Optional[list[str]] = None, filter: Optional[dict] = None):
|
||||
if ids:
|
||||
actions = [
|
||||
{
|
||||
"_op_type": "delete",
|
||||
"_index": self._get_index_name(collection_name),
|
||||
"_id": id,
|
||||
}
|
||||
for id in ids
|
||||
]
|
||||
bulk(self.client, actions)
|
||||
elif filter:
|
||||
query_body = {
|
||||
"query": {
|
||||
"bool": {
|
||||
"filter": []
|
||||
}
|
||||
},
|
||||
}
|
||||
for field, value in filter.items():
|
||||
query_body["query"]["bool"]["filter"].append({
|
||||
"match": {
|
||||
"metadata." + str(field): value
|
||||
}
|
||||
})
|
||||
self.client.delete_by_query(index=self._get_index_name(collection_name), body=query_body)
|
||||
|
||||
def reset(self):
|
||||
indices = self.client.indices.get(index=f"{self.index_prefix}_*")
|
||||
for index in indices:
|
||||
|
Loading…
x
Reference in New Issue
Block a user